-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[FIX] EVA meta device fix, multi-gpu functionality (#2218)
- important bugfix for meta device check - add multi gpu functionality and example - update docs
- Loading branch information
Showing
6 changed files
with
189 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
# Copyright 2024-present the HuggingFace Inc. team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
|
||
import torch | ||
import torch.distributed as dist | ||
from datasets import load_dataset | ||
from torch.nn.parallel import DistributedDataParallel as DDP | ||
from torch.utils.data import DataLoader | ||
from torch.utils.data.distributed import DistributedSampler | ||
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | ||
from utils import DataCollator, TokenizerMetaMath | ||
|
||
from peft import EvaConfig, LoraConfig, get_eva_state_dict, get_peft_model, initialize_lora_eva_weights | ||
|
||
|
||
# run this script e.g. with: torchrun --nproc_per_node=4 eva_finetuning_multi_gpu.py | ||
|
||
# config | ||
model_name = "meta-llama/Llama-2-7b-hf" | ||
max_seq_len = 512 | ||
rank = 16 | ||
alpha = 1 | ||
rho = 2.0 | ||
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj"] | ||
svd_batch_size = 4 # can be different from the batch size used in finetuning | ||
batch_size = 4 | ||
learning_rate = 5e-4 | ||
gradient_accumulation_steps = 8 | ||
num_epochs = 1 | ||
output_dir = "outputs" | ||
bf16 = True | ||
|
||
|
||
# Initialize distributed environment | ||
if torch.cuda.is_available(): | ||
local_rank = int(os.environ.get("LOCAL_RANK", -1)) | ||
torch.cuda.set_device(local_rank) | ||
dist.init_process_group("nccl") | ||
world_size = dist.get_world_size() | ||
else: | ||
local_rank = -1 | ||
world_size = 1 | ||
|
||
|
||
# load model and tokenizer | ||
model = AutoModelForCausalLM.from_pretrained(model_name) | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
|
||
# load dataset | ||
dataset = load_dataset("meta-math/MetaMathQA") | ||
dataset = dataset.map( | ||
TokenizerMetaMath(model_name), | ||
batched=True, | ||
remove_columns=dataset["train"].column_names, | ||
) | ||
dataset.set_format(type="torch") | ||
|
||
# data collator | ||
data_collator = DataCollator(tokenizer.eos_token_id, max_length=max_seq_len) | ||
|
||
# Create sampler for distributed training | ||
sampler = DistributedSampler(dataset["train"], num_replicas=world_size, rank=local_rank) | ||
|
||
# dataloader | ||
dataloader = DataLoader( | ||
dataset["train"], | ||
batch_size=svd_batch_size, | ||
collate_fn=data_collator, | ||
sampler=sampler, | ||
shuffle=False, | ||
) | ||
|
||
sampler.set_epoch(0) | ||
|
||
# Wrap model in DDP | ||
model = model.to(local_rank) | ||
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=False) | ||
|
||
# setup peft config | ||
eva_config = EvaConfig(rho=rho) | ||
peft_config = LoraConfig( | ||
r=rank, lora_alpha=alpha, target_modules=target_modules, init_lora_weights="eva", eva_config=eva_config | ||
) | ||
|
||
# EVA initialization | ||
eva_state_dict = get_eva_state_dict(model, dataloader, peft_config) | ||
eva_state_dict = {".".join(["base_model.model"] + k.split(".")[1:]): v for k, v in eva_state_dict.items()} | ||
|
||
# cleanup ddp | ||
model = model.module | ||
|
||
# initialize peft model | ||
peft_model = get_peft_model(model, peft_config, low_cpu_mem_usage=True) | ||
initialize_lora_eva_weights(peft_model, eva_state_dict=eva_state_dict) | ||
|
||
# setup training arguments | ||
training_args = TrainingArguments( | ||
per_device_train_batch_size=batch_size, | ||
learning_rate=learning_rate, | ||
gradient_accumulation_steps=gradient_accumulation_steps, | ||
num_train_epochs=num_epochs, | ||
output_dir=output_dir, | ||
remove_unused_columns=False, | ||
bf16=bf16, | ||
) | ||
|
||
# continue with standard finetuning | ||
trainer = Trainer( | ||
model=peft_model, | ||
args=training_args, | ||
train_dataset=dataset["train"], | ||
data_collator=data_collator, | ||
) | ||
trainer.train() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters