Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Mask shape bug fix #358

Merged
merged 7 commits into from
Jan 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion dacapo/experiments/trainers/gunpowder_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -361,7 +361,9 @@ def iterate(self, num_iterations, model, optimizer, device):
),
}
if mask is not None:
snapshot_arrays["volumes/mask"] = mask
snapshot_arrays["volumes/mask"] = np_to_funlib_array(
mask[0], offset=target.offset, voxel_size=target.voxel_size
)
logger.warning(
f"Saving Snapshot. Iteration: {iteration}, "
f"Loss: {loss.detach().cpu().numpy().item()}!"
Expand Down
2 changes: 1 addition & 1 deletion dacapo/tmp.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def create_from_identifier(
return prepare_ds(
out_path,
shape=(*list_num_channels, *roi.shape / voxel_size),
offset=roi.offset / voxel_size,
offset=roi.offset,
voxel_size=voxel_size,
axis_names=axis_names,
dtype=dtype,
Expand Down
18 changes: 14 additions & 4 deletions tests/operations/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from funlib.persistence import prepare_ds
from funlib.geometry import Coordinate

from dacapo.experiments.trainers import GunpowderTrainerConfig
from dacapo.experiments.datasplits import SimpleDataSplitConfig
from dacapo.experiments.tasks import (
DistanceTaskConfig,
Expand All @@ -13,6 +14,19 @@
from pathlib import Path


def build_test_train_config(multiprocessing: bool):
"""
Builds the simplest possible trainer given the parameters.
"""
return GunpowderTrainerConfig(
name="test_trainer",
batch_size=1,
learning_rate=0.0001,
num_data_fetchers=1 + multiprocessing,
snapshot_interval=1,
)


def build_test_data_config(
tmpdir: Path, data_dims: int, channels: bool, upsample: bool, task_type: str
):
Expand Down Expand Up @@ -104,9 +118,7 @@ def build_test_architecture_config(
data_dims: int,
architecture_dims: int,
channels: bool,
batch_norm: bool,
upsample: bool,
use_attention: bool,
padding: str,
):
"""
Expand Down Expand Up @@ -160,7 +172,5 @@ def build_test_architecture_config(
kernel_size_up=kernel_size_up,
constant_upsample=True,
upsample_factors=upsample_factors,
batch_norm=batch_norm,
use_attention=use_attention,
padding=padding,
)
36 changes: 24 additions & 12 deletions tests/operations/test_mini.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,19 @@
from ..fixtures import *
from .helpers import (
build_test_train_config,
build_test_data_config,
build_test_task_config,
build_test_architecture_config,
)

from dacapo.store.create_store import create_array_store
from dacapo.experiments import Run
from dacapo.train import train_run
from dacapo.validate import validate_run

import zarr

import pytest
from pytest_lazy_fixtures import lf

from dacapo.experiments.run_config import RunConfig

Expand All @@ -22,34 +25,30 @@
@pytest.mark.parametrize("data_dims", [2, 3])
@pytest.mark.parametrize("channels", [True, False])
@pytest.mark.parametrize("task", ["distance", "onehot", "affs"])
@pytest.mark.parametrize("trainer", [lf("gunpowder_trainer")])
@pytest.mark.parametrize("architecture_dims", [2, 3])
@pytest.mark.parametrize("upsample", [True, False])
# @pytest.mark.parametrize("batch_norm", [True, False])
@pytest.mark.parametrize("batch_norm", [False])
# @pytest.mark.parametrize("use_attention", [True, False])
@pytest.mark.parametrize("use_attention", [False])
@pytest.mark.parametrize("padding", ["valid", "same"])
@pytest.mark.parametrize("func", ["train", "validate"])
@pytest.mark.parametrize("multiprocessing", [False])
def test_mini(
tmpdir,
data_dims,
channels,
task,
trainer,
architecture_dims,
batch_norm,
upsample,
use_attention,
padding,
func,
multiprocessing,
):
# Invalid configurations:
if data_dims == 2 and architecture_dims == 3:
# cannot train a 3D model on 2D data
# TODO: maybe check that an appropriate warning is raised somewhere
return

trainer_config = build_test_train_config(multiprocessing)

data_config = build_test_data_config(
tmpdir,
data_dims,
Expand All @@ -62,17 +61,15 @@ def test_mini(
data_dims,
architecture_dims,
channels,
batch_norm,
upsample,
use_attention,
padding,
)

run_config = RunConfig(
name=f"test_{func}",
task_config=task_config,
architecture_config=architecture_config,
trainer_config=trainer,
trainer_config=trainer_config,
datasplit_config=data_config,
repetition=0,
num_iterations=1,
Expand All @@ -81,5 +78,20 @@ def test_mini(

if func == "train":
train_run(run)
array_store = create_array_store()
snapshot_container = array_store.snapshot_container(run.name).container
assert snapshot_container.exists()
assert all(
x in zarr.open(snapshot_container)
for x in [
"0/volumes/raw",
"0/volumes/gt",
"0/volumes/target",
"0/volumes/weight",
"0/volumes/prediction",
"0/volumes/gradients",
"0/volumes/mask",
]
)
elif func == "validate":
validate_run(run, 1)
Loading