This dnn object detection project is for my personal practice and test.
bbox_stream.py
: use yolov4 model to recognize objects and draw bounding boxes. It can read from a webcam or a video file.object_detect_stream.py
: use google net to recognize the object in images.
- Download model files (.names, .weights, .cfg) from the darknet or other resrouces to the
/model
folder. - Change the model pathes in the python script.
"model/coco.names"
yolo_config_path = "model/yolov4-tiny.cfg"
yolo_weights_path = "model/yolov4-tiny.weights"
- Specify image/video frame width:
frame_width = 1280
. - Specify using CUDA or not. Change it to
True
if NVIDIA GPU is available.
TBC
TBC
- AlexeyAB/darknet: https://github.com/AlexeyAB/darknet/releases/tag/yolov4
- 李謦伊's Medium: https://medium.com/ching-i/yolo-c49f70241aa7
- dschwalm/deeplearning: https://github.com/dschwalm/deeplearning