-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
113 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
import base64 | ||
from io import BytesIO | ||
import pandas as pd | ||
|
||
|
||
def get_csv_download_link(df, name): | ||
"""Generates a link allowing the data in a given panda dataframe to be downloaded | ||
in: dataframe | ||
out: href string | ||
""" | ||
csv = df.to_csv(index=False) | ||
b64 = base64.b64encode( | ||
csv.encode() | ||
).decode() # some strings <-> bytes conversions necessary here | ||
href = f'<a href="data:file/csv;base64,{b64}" download="ioi_{name}.csv">Download as CSV file</a>' | ||
return href | ||
|
||
|
||
def to_excel(df): | ||
output = BytesIO() | ||
writer = pd.ExcelWriter(output, engine="xlsxwriter") | ||
df.to_excel(writer, sheet_name="data") | ||
writer.save() | ||
processed_data = output.getvalue() | ||
return processed_data | ||
|
||
|
||
def get_excel_download_link(df, name): | ||
"""Generates a link allowing the data in a given panda dataframe to be downloaded | ||
in: dataframe | ||
out: href string | ||
""" | ||
val = to_excel(df) | ||
b64 = base64.b64encode(val) | ||
return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="ioi_{name}.xlsx">Download as Excel file</a>' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import pandas as pd | ||
import plotly.graph_objects as go | ||
import plotly.express as px | ||
|
||
|
||
def generate_pie_chart( | ||
df, | ||
values, | ||
names, | ||
hover_name, | ||
color, | ||
color_discrete_sequence, | ||
color_discrete_map, | ||
): | ||
fig = px.pie( | ||
df, | ||
values=values, | ||
names=names, | ||
hover_name=hover_name, | ||
color=color, | ||
color_discrete_sequence=color_discrete_sequence, | ||
color_discrete_map=color_discrete_map, | ||
width=800, | ||
) | ||
fig.update_traces(textinfo="percent+value") | ||
return fig | ||
|
||
|
||
def generate_histogram(df, x, y, nbins, color, color_discrete_map, labels): | ||
fig = px.histogram( | ||
df, | ||
x=x, | ||
y=y, | ||
nbins=nbins, | ||
color=color, | ||
color_discrete_map=color_discrete_map, | ||
labels=labels, | ||
) | ||
return fig | ||
|
||
|
||
def generate_stacked_bar_chart(data): | ||
fig = go.Figure(data=data) | ||
fig.update_layout(width=800, height=800, barmode="stack") | ||
return fig | ||
|
||
|
||
def generate_ranking_plot(df, input_col, options, scoring): | ||
input_col_score = pd.Series(index=options) | ||
for i in range(1, 7): | ||
input_col_counts = df[f"{input_col}[{i}]"].value_counts() | ||
scores = input_col_counts.multiply(scoring[i]) | ||
input_col_score = input_col_score.add(scores, fill_value=0) | ||
input_col_score = input_col_score.sort_values(ascending=False) | ||
if i == 1: | ||
ranked_first = df[f"{input_col}[1]"].value_counts() | ||
ranked_first_clean = pd.DataFrame( | ||
{"institution": ranked_first.index, "ranked_first": ranked_first.values} | ||
) | ||
input_col_df = pd.DataFrame( | ||
{ | ||
"institution": input_col_score.index, | ||
"score": input_col_score.values, | ||
} | ||
) | ||
input_col_df = input_col_df.merge( | ||
ranked_first_clean, on="institution", how="left" | ||
).fillna(0) | ||
input_col_df = input_col_df.sort_values(["score", "ranked_first"]) | ||
fig = px.bar( | ||
input_col_df.sort_values(by="score"), | ||
y="institution", | ||
x="score", | ||
color="ranked_first", | ||
color_continuous_scale="viridis", | ||
orientation="h", | ||
) | ||
return fig |