Skip to content

lucasmpavelski/elmoead

Repository files navigation

Overview

This folder contain the source code for ELMOEA/D (Extreme learning surrogate models in multi-objective optimization based on decomposition). The src folder contain the ELMOEA/D source files and the lib folder its dependencies.

Building Instructions

The project is build with CMake version 2.8>. Other dependencies are a C++ compiler compatible with C++11 standard and gnuplot if plotting callback is used.

To build the executables execute the following in elmoead_benchmarks folder (assuming a Unix like system):

$ mkdir build && cd build $ cmake .. $ make

This will build the executables:

moead_surrogate - ELMOEA/D algorithm moead_alg - Non-surrogate MOEA/D algorithm test_all - unit tests

Running ELMOEA/D

To use ELMOEA/D run following command:

./moead_surrogate config_file.cnf final_pop.dat

where config_file.cnf is the parameters files and final_pop.dat is the final population objectives data.

The configuration file have the following syntax: =

The supported parameters are:

  • seed <long>: random number generator seed
  • callback_type: callback function called every iteration (NONE, PLOT, LOG)
  • prob_name <string>: problem name (WFGn, ZDTn, UFn, DTLZn etc)
  • prob_no_vars <long>: number of variables
  • prob_no_objs <long>: number of objectives
  • hyp_ref <real> <real> ...: hypervolume reference point (prob_no_objs real variables)
  • de_operator <string>: differential evolution algorithm (DE/RAND/1/BIN, DE/RAND/2/BIN, DE/NONLINEAR)
  • de_cr <real>: differential evolution algorithm crossover rate
  • de_f <real>: differential evolution algorithm scaling parameter
  • weight_type <string>: moea/d weight generation (UNIFORM, RANDOM)
  • moead_type <string>: moea/d type (MOEA/D, MOEA/D-DE, MOEA/D-STM)
  • moead_aggr_func <string>: moead aggregation function (TCHEBYCHEFF, INVERTED_TCHEBYCHEFF PENALTY_BOUNDARY_INTERSECTION etc)
  • moead_no_partitions <long>: number of partitions in moead weight set
  • moead_no_neighbors <long>: number of individuals per neighborhood
  • moead_no_updates <long>: number of moead updates per generation
  • moead_real_b <real>: moea/d-de chance to choose from neighborhood
  • moead_sbx_xover <read>: moead sbx crossover rate
  • moead_sbx_eta <read>: moead sbx eta parameter
  • moead_pm_mut <read>: moead mutation rate
  • moead_pm_eta <read>: moead polynomial mutaion eta parameter
  • elm_act_func <string>: elm activation function (SIGMOID, RBF, GAUSSIAN, MULTIQUADRIC etc)
  • elm_C <real>: elm regularization parameter", 1.0);
  • elm_no_hidden <long>: elm number of hidden neurons
  • elm_norm_input <boolean>: normalize input variables flag
  • elm_norm_output <boolean>: normalize output variables flag
  • no_evals: maximum number of real evaluations
  • no_sel_partitions: elmoead number of partitions for selection weights
  • archive_eps: elmoead archive minimum difference

If the parameter is not provided in the configuration file, a default value will be set and printed on the execution.

Disclamer

I do not own any of the libraries contained in the lib/ folder. Please respect their respective licences.

If you use this code please cite the paper:

This work was also based on the papers (please also cite them if relevant):

  • Saúl Zapotecas Martínez and Carlos A. Coello Coello. 2013. MOEA/D assisted by rbf networks for expensive multi-objective optimization problems. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (GECCO '13), Christian Blum (Ed.). ACM, New York, NY, USA, 1405-1412. DOI=http://dx.doi.org/10.1145/2463372.2465805.
  • H. Li and Q. Zhang, Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II, IEEE Trans on Evolutionary Computation, vol. 12, no 2, pp 284-302, April/2009.
  • G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learning Machine for Regression and Multiclass Classification,” IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 42, no. 2, pp. 513-529, 2012.

About

ELM surrogate models for MOEA/D algorithm

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published