Skip to content

Commit

Permalink
changes
Browse files Browse the repository at this point in the history
  • Loading branch information
mattsoh committed Sep 20, 2024
1 parent 498a5c5 commit fe93990
Show file tree
Hide file tree
Showing 2 changed files with 157 additions and 1 deletion.
3 changes: 2 additions & 1 deletion helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,8 +212,9 @@ def generate_and_print_sample(model, tokenizer, device, start_context):
with torch.no_grad():
token_ids = generate(model=model, idx=encoded, max_new_tokens=100, context_size=context_size)
decoded_text = token_ids_to_text(token_ids, tokenizer)
print(decoded_text.replace("\n", " "))
# print(decoded_text.replace("\n", " "))
model.train()
return decoded_text

def assign(left, right):
if left.shape != right.shape:
Expand Down
155 changes: 155 additions & 0 deletions helper_simple.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
import torch
import torch.nn as nn

class MultiHeadAttn(nn.Module):
def __init__(self, d_in, d_out, ctx_len, dropout, num_heads, qkv_bias=False):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.out_proj = nn.Linear(d_out, d_out)
self.dropout = nn.Dropout(dropout)
self.register_buffer('mask', torch.triu(torch.ones(ctx_len, ctx_len), diagonal=1))

def forward(self, x):
b, num_tokens, d_in = x.shape
keys = self.W_key(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
queries = self.W_query(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
values = self.W_value(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
attn_scores = queries @ keys.transpose(2, 3)
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
attn_scores.masked_fill_(mask_bool, -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
attn_weights = self.dropout(attn_weights)
context_vec = (attn_weights @ values).transpose(1, 2).reshape(b, num_tokens, self.d_out)
return self.out_proj(context_vec)

class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
GELU(),
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
)

def forward(self, x):
return self.layers(x)

class GELU(nn.Module):
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(
torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * x**3)
))

class LayerNorm(nn.Module):
def __init__(self, emb_dim):
super().__init__()
self.eps = 1e-5
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim))

def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True, unbiased=False)
norm_x = (x - mean) / torch.sqrt(var + self.eps)
return self.scale * norm_x + self.shift

class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = MultiHeadAttn(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
ctx_len=cfg["context_length"],
num_heads=cfg["n_heads"],
dropout=cfg["drop_rate"],
qkv_bias=cfg["qkv_bias"])
self.ff = FeedForward(cfg)
self.norm1 = LayerNorm(cfg["emb_dim"])
self.norm2 = LayerNorm(cfg["emb_dim"])
self.drop_resid = nn.Dropout(cfg["drop_rate"])

def forward(self, x):
save = x
x = self.norm1(x)
x = self.att(x)
x = self.drop_resid(x)
x += save
save = x
x = self.norm2(x)
x = self.ff(x)
x = self.drop_resid(x)
x += save
return x

class GPT(nn.Module):
def __init__(self, cfg):
super().__init__()
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
self.drop_emb = nn.Dropout(cfg["drop_rate"])
self.trf_blocks = nn.Sequential(
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = LayerNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)

def forward(self, in_idx):
batch_size, seq_len = in_idx.shape
tok_embeds = self.tok_emb(in_idx)
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
x = tok_embeds + pos_embeds
x = self.drop_emb(x)
x = self.trf_blocks(x)
x = self.final_norm(x)
return self.out_head(x)

def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
for _ in range(max_new_tokens):
idx_cond = idx[:, -context_size:]
with torch.no_grad():
logits = model(idx_cond)
logits = logits[:, -1, :]

if top_k is not None:
top_logits, _ = torch.topk(logits, top_k)
min_val = top_logits[:, -1]
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)

if temperature > 0.0:
logits = logits / temperature
probs = torch.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
else:
idx_next = torch.argmax(logits, dim=-1, keepdim=True)

if eos_id is not None and idx_next == eos_id:
break

idx = torch.cat((idx, idx_next), dim=1)

return idx

def generate_and_print_sample(model, tokenizer, device, start_context):
model.eval()
context_size = model.pos_emb.weight.shape[0]
encoded = text_to_token_ids(start_context, tokenizer).to(device)
with torch.no_grad():
token_ids = generate(model=model, idx=encoded, max_new_tokens=100, context_size=context_size)
decoded_text = token_ids_to_text(token_ids, tokenizer)
model.train()
return decoded_text

def text_to_token_ids(text, tokenizer):
encoded = tokenizer.encode(text, allowed_special={"<|endoftext|>"})
encoded_tensor = torch.tensor(encoded).unsqueeze(0)
return encoded_tensor

def token_ids_to_text(token_ids, tokenizer):
flat = token_ids.squeeze(0)
return tokenizer.decode(flat.tolist())

0 comments on commit fe93990

Please sign in to comment.