Skip to content

mdhasanai/lightweight-face-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

Face-Detector with landmark

Features

  • Retinaface-mobile0.25 model converted into ncnn python/ opencv onnx/ pytorch python
  • Face-Detector-1MB slim
  • 5 key points of face detection
  • Support onnx export
  • Network parameter and flop calculation

lightweight face detector with keypoint detection

Provides a series of face detectors suitable for mobile deployment including key face detectors: Modified the anchor size of Retinaface-mobile0.25 to make it more suitable for edge computing; Reimplemented Face-Detector-1MB and added key point detection and ncnn C++ The deployment function, in most cases, the accuracy is better than the original version.

Requirments

  • Ubuntu18.04
  • Python3.7
  • opencv
  • numpy

Accuracy

Widerface test

  • Accuracy in wider face val (single-scale input resolution: 320*240
method Easy Medium Hard
libfacedetection v1(caffe) 0.65 0.5 0.233
libfacedetection v2(caffe) 0.714 0.585 0.306
version-slim(original) 0.765 0.662 0.385
version-RFB(original) 0.784 0.688 0.418
version-slim(our) 0.795 0.683 0.34.5
version-RFB(our) 0.814 0.710 0.363
Retinaface-Mobilenet-0.25(our) 0.811 0.697 0.376
  • Accuracy in wider face val (single-scale input resolution::640*480
method Easy Medium Hard
libfacedetection v1(caffe) 0.741 0.683 0.421
libfacedetection v2(caffe) 0.773 0.718 0.485
version-slim(original) 0.757 0.721 0.511
version-RFB(original) 0.851 0.81 0.541
version-slim(our) 0.850 0.808 0.595
version-RFB(our) 0.865 0.828 0.622
Retinaface-Mobilenet-0.25(our) 0.873 0.836 0.638

ps: When testing, the long side is 320 or 640, and the image is scaled in equal proportions.

Parameter and flop

method parameter(M) flop(M)
version-slim(our) 0.343 98.793
version-RFB(our) 0.359 118.435
Retinaface-Mobilenet-0.25(our) 0.426 193.921

ps: 320*240 as input

Python inference

coming soon

References

@inproceedings{deng2019retinaface,
title={RetinaFace: Single-stage Dense Face Localisation in the Wild},
author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos},
booktitle={arxiv},
year={2019}

About

face detector

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages