From project root run
source activate optimizer
From project root run
python pure.py
From project root run
python helloMTA.py
From project root run
python optimizer.py --cfg path/to_config_file
python optimizer.py --cfg config/config.yaml
python optimizer.py --cfg config/config.yaml --host=192.168.0.60
python optimizer.py --cfg config/config.yaml --host 0.0.0.0 --port 5000
GET /optimizer/hello
Test REST API.
curl -X GET http://193.224.59.115:5000/optimizer/hello
curl -X GET http://193.224.59.115:5000/
POST /optimizer/init
Initialize optimizer with the neccessary constants.
curl -X POST http://127.0.0.1:5000/optimizer/init --data-binary @test_files/optimizer_constants.yaml
curl -X POST http://193.224.59.115:5000/optimizer/init --data-binary @test_files/optimizer_constants.yaml
POST /optimizer/sample
Send a new training sample.
curl -X POST http://127.0.0.1:5000/optimizer/sample --data-binary @test_files/metrics_sample_example.yaml
curl -X POST http://193.224.59.115:5000/optimizer/sample --data-binary @test_files/metrics_sample_example.yaml
curl -X POST http://193.224.59.115:5000/optimizer/sample --data-binary @test_files/metrics_sample_example_up.yaml
curl -X POST http://193.224.59.115:5000/optimizer/sample --data-binary @test_files/metrics_sample_example_down.yaml
GET /optimizer/advice
Get scaling advice.
curl -X GET http://127.0.0.1:5000/optimizer/advice
curl -X GET http://193.224.59.115:5000/optimizer/advice
curl -X GET http://193.224.59.115:5000/optimizer/advice?last=False
GET /optimizer/training_data
Download zipped training data that contains both neural network and linear regression data.
curl -X GET http://127.0.0.1:5000/optimizer/training_data
cd csv/csv_to_optimizer
source env/csv_to_optimizer/bin/activate
python csv_to_optimizer.py