Skip to content

movingpandas/qgis-trajectools

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

QGIS Trajectools

View Jupyter Notebook Zenodo badge

The Trajectools plugin adds mobility data analysis algorithms to the QGIS Processing toolbox.

trajectools

Requirements

Trajectools requires MovingPandas (a Python library for movement data analysis) and optionally integrates scikit-mobility (for privacy tests), stonesoup (for smoothing), and gtfs_functions (for GTFS data support).

Conda install

The recommended way to install these dependencies is through conda/mamba:

(base) conda create -n qgis -c conda-forge python=3.9 
(base) conda activate qgis
(qgis) mamba install -c conda-forge qgis movingpandas scikit-mobility stonesoup
(qgis) pip install gtfs_functions h3==3.7.7

(More details: https://anitagraser.com/2023/01/21/pyqgis-jupyter-notebooks-on-windows-using-conda/)

Pip install

If you cannot use conda, you may try installing from the QGIS Python Console:

import pip
pip.main(['install', 'movingpandas'])
pip.main(['install', 'scikit-mobility'])
pip.main(['install', 'stonesoup'])
pip.main(['install', 'gtfs_functions'])

Plugin installation

The Trajectools plugin can be installed directly in QGIS using the built-in Plugin Manager:

plugin manager

Figure 1: QGIS Plugin Manager with Trajectools plugin installed.

Trajectools Toolbox

Figure 2: Trajectools (v2.4) algorithms in the QGIS Processing toolbox

Examples

The individual Trajectools algorithms are flexible and modular and can therefore be used on a wide array on input datasets, including, for example, the open Microsoft Geolife dataset a sample of which is included in the plugin repo:

Trajectools Create Trajectory

Trajectools Clip Trajectory

Trajectools Kalman Filter Smoothing

Trajectools GTFS Extract Segments

Citation information

Please cite [0] when using Trajectools in your research and reference the appropriate release version using the Zenodo DOI: https://doi.org/10.5281/zenodo.13847642

[0] Graser, A., & Dragaschnig, M. (2024, June). Trajectools Demo: Towards No-Code Solutions for Movement Data Analytics. In 2024 25th IEEE International Conference on Mobile Data Management (MDM) (pp. 235-238). IEEE.

@inproceedings{graser2024trajectools,
  title = {Trajectools Demo: Towards No-Code Solutions for Movement Data Analytics},
  author = {Graser, Anita and Dragaschnig, Melitta},
  booktitle = {2024 25th IEEE International Conference on Mobile Data Management (MDM)},
  pages = {235--238},
  year = {2024},
  organization = {IEEE},
  doi = {10.1109/MDM61037.2024.00048},
}

Acknowledgements

This work was supported in part by the Horizon Framework Programme of the European Union under grant agreement No. 101093051 (EMERALDS).