Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add adaptive example of a Monte Carlo estimate #19

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
247 changes: 247 additions & 0 deletions elastic_monte_carlo_estimate_of_pi.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Monte Carlo Estimate of $\\pi$\n",
"\n",
"<img src=\"http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg\" \n",
" width=\"50%\" \n",
" align=top\n",
" alt=\"Dask logo\">\n",
"<img src=\"https://upload.wikimedia.org/wikipedia/commons/b/ba/Monte-Carlo01.gif\" \n",
" width=\"30%\" \n",
" align=top\n",
" alt=\"PI monte-carlo estimate\">\n",
" \n",
"Using [Dask's adaptivity](http://docs.dask.org/en/latest/setup/adaptive.html), we'll show that it is possible to scale the available resources to meet almost identical wall times irrespective of the acutal work load:\n",
"\n",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

typo in actual.

You should maybe introduce also the Montecarlo estimate of py mechanism?

"- Estimating $\\pi$ from 16 GB of random data is done in 17 seconds using 3 workers (with 2 cores each).\n",
"- Estimating $\\pi$ from 512 GB of random data is done in 19 seconds using 142 workers (with 2 cores each).\n",
"- Estimating $\\pi$ from 1024 GB of random data is done in 21 seconds using 273 workers (with 2 cores each)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from dask_kubernetes import KubeCluster\n",
"cluster = KubeCluster(n_workers=1)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# check Adaptive? for help on adapt's kwargs.\n",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you prepare the cell with the Adaptive? call?

"from dask.distributed import Adaptive"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"cluster.adapt(minimum=1, maximum=400,\n",
" target_duration=\"20s\", # more realistic than the default \"5s\"?\n",
" wait_count=10, # 10 seconds before killing an idle worker\n",
" scale_factor=1.2); # scale slower than doubling (default)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table style=\"border: 2px solid white;\">\n",
"<tr>\n",
"<td style=\"vertical-align: top; border: 0px solid white\">\n",
"<h3>Client</h3>\n",
"<ul>\n",
" <li><b>Scheduler: </b>tcp://10.23.27.5:37004\n",
" <li><b>Dashboard: </b><a href='/user/willirath/proxy/8787/status' target='_blank'>/user/willirath/proxy/8787/status</a>\n",
"</ul>\n",
"</td>\n",
"<td style=\"vertical-align: top; border: 0px solid white\">\n",
"<h3>Cluster</h3>\n",
"<ul>\n",
" <li><b>Workers: </b>0</li>\n",
" <li><b>Cores: </b>0</li>\n",
" <li><b>Memory: </b>0 B</li>\n",
"</ul>\n",
"</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<Client: scheduler='tcp://10.23.27.5:37004' processes=0 cores=0>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from dask.distributed import Client\n",
"c = Client(cluster)\n",
"c"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(Check the dash board to see the cluster scale up and down!)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import dask.array as da\n",
"import numpy as np\n",
"from time import time\n",
"\n",
"def calc_pi_mc(size):\n",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It would be good to first describe step by step the pi estimation, that would be very interesting.
Then at the end put all inside a function to perform scalability analysis.

" xy = da.random.uniform(0, 1, size=(size / 8 / 2, 2), chunks=(0.25e9 / 8, 2))\n",
" \n",
" in_circle = ((xy ** 2).sum(axis=-1) < 1)\n",
" pi = 4 * in_circle.mean()\n",
"\n",
" start = time()\n",
" pi = pi.compute()\n",
" end = time()\n",
" \n",
" num_pods = len(cluster.pods())\n",
" \n",
" print(\"Size of data:\", xy.nbytes / 1e9, \"GB\")\n",
" print(\"Monte-Carlo pi:\", pi)\n",
" print(\"Numpys pi:\", np.pi)\n",
" print(\"Delta:\", abs(pi - np.pi))\n",
" print(\"Duration: {:.2f} seconds with {} pods\".format(end-start, num_pods))\n",
" print()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Size of data: 1.0 GB\n",
"Monte-Carlo pi: 3.141738048\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 0.0001453944102070004\n",
"Duration: 4.68 seconds with 1 pods\n",
"\n",
"Size of data: 2.0 GB\n",
"Monte-Carlo pi: 3.1416384\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 4.574641020704817e-05\n",
"Duration: 5.31 seconds with 1 pods\n",
"\n",
"Size of data: 4.0 GB\n",
"Monte-Carlo pi: 3.141615792\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 2.3138410206957616e-05\n",
"Duration: 7.91 seconds with 2 pods\n",
"\n",
"Size of data: 8.0 GB\n",
"Monte-Carlo pi: 3.141654136\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 6.148241020698109e-05\n",
"Duration: 10.73 seconds with 3 pods\n",
"\n",
"Size of data: 16.0 GB\n",
"Monte-Carlo pi: 3.141506724\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 8.592958979303233e-05\n",
"Duration: 17.35 seconds with 3 pods\n",
"\n",
"Size of data: 32.0 GB\n",
"Monte-Carlo pi: 3.141638062\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 4.5408410207059546e-05\n",
"Duration: 12.77 seconds with 12 pods\n",
"\n",
"Size of data: 64.0 GB\n",
"Monte-Carlo pi: 3.141572989\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 1.9664589792967035e-05\n",
"Duration: 19.20 seconds with 15 pods\n",
"\n",
"Size of data: 128.0 GB\n",
"Monte-Carlo pi: 3.141593464\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 8.104102069417252e-07\n",
"Duration: 17.55 seconds with 36 pods\n",
"\n",
"Size of data: 256.0 GB\n",
"Monte-Carlo pi: 3.14161230525\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 1.9651660206676524e-05\n",
"Duration: 18.69 seconds with 68 pods\n",
"\n",
"Size of data: 512.0 GB\n",
"Monte-Carlo pi: 3.14158963425\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 3.019339793297604e-06\n",
"Duration: 18.71 seconds with 142 pods\n",
"\n",
"Size of data: 1024.0 GB\n",
"Monte-Carlo pi: 3.1415884875\n",
"Numpys pi: 3.141592653589793\n",
"Delta: 4.166089793145034e-06\n",
"Duration: 20.80 seconds with 273 pods\n",
"\n"
]
}
],
"source": [
"from time import sleep\n",
"\n",
"for size in [1e9 * 2 ** n for n in range(11)]:\n",
" \n",
" calc_pi_mc(size)\n",
" sleep(10) # allow for some scale-down time"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}