-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 70c157e
Showing
8 changed files
with
351 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
log | ||
__pycache__ |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
import torch | ||
import torch.nn as nn | ||
import numpy as np | ||
import os | ||
import time | ||
from collections import deque | ||
from torch.utils.tensorboard import SummaryWriter | ||
from replay_buffer.replay_buffer import ReplayMemory | ||
from abc import ABC, abstractmethod | ||
|
||
|
||
class DQNBaseAgent(ABC): | ||
def __init__(self, config): | ||
self.gpu = config["gpu"] | ||
self.device = torch.device("cuda" if self.gpu and torch.cuda.is_available() else "cpu") | ||
self.total_time_step = 0 | ||
self.training_steps = int(config["training_steps"]) | ||
self.batch_size = int(config["batch_size"]) | ||
self.epsilon = 1.0 | ||
self.eps_min = config["eps_min"] | ||
self.eps_decay = config["eps_decay"] | ||
self.eval_epsilon = config["eval_epsilon"] | ||
self.warmup_steps = config["warmup_steps"] | ||
self.eval_interval = config["eval_interval"] | ||
self.eval_episode = config["eval_episode"] | ||
self.gamma = config["gamma"] | ||
self.update_freq = config["update_freq"] | ||
self.update_target_freq = config["update_target_freq"] | ||
|
||
self.replay_buffer = ReplayMemory(int(config["replay_buffer_capacity"])) | ||
self.writer = SummaryWriter(config["logdir"]) | ||
|
||
@abstractmethod | ||
def decide_agent_actions(self, observation, epsilon=0.0, action_space=None): | ||
### TODO ### | ||
# get action from behavior net, with epsilon-greedy selection | ||
|
||
return NotImplementedError | ||
|
||
def update(self): | ||
if self.total_time_step % self.update_freq == 0: | ||
self.update_behavior_network() | ||
if self.total_time_step % self.update_target_freq == 0: | ||
self.update_target_network() | ||
|
||
@abstractmethod | ||
def update_behavior_network(self): | ||
# sample a minibatch of transitions | ||
state, action, reward, next_state, done = self.replay_buffer.sample(self.batch_size, self.device) | ||
### TODO ### | ||
# calculate the loss and update the behavior network | ||
|
||
|
||
def update_target_network(self): | ||
self.target_net.load_state_dict(self.behavior_net.state_dict()) | ||
|
||
def epsilon_decay(self): | ||
self.epsilon -= (1 - self.eps_min) / self.eps_decay | ||
self.epsilon = max(self.epsilon, self.eps_min) | ||
|
||
def train(self): | ||
episode_idx = 0 | ||
while self.total_time_step <= self.training_steps: | ||
observation, info = self.env.reset() | ||
episode_reward = 0 | ||
episode_len = 0 | ||
episode_idx += 1 | ||
while True: | ||
if self.total_time_step < self.warmup_steps: | ||
action = self.decide_agent_actions(observation, 1.0, self.env.action_space) | ||
else: | ||
action = self.decide_agent_actions(observation, self.epsilon, self.env.action_space) | ||
self.epsilon_decay() | ||
|
||
next_observation, reward, terminate, truncate, info = self.env.step(action) | ||
self.replay_buffer.append(observation, [action], [reward], next_observation, [int(terminate)]) | ||
|
||
if self.total_time_step >= self.warmup_steps: | ||
self.update() | ||
|
||
episode_reward += reward | ||
episode_len += 1 | ||
|
||
if terminate or truncate: | ||
self.writer.add_scalar('Train/Episode Reward', episode_reward, self.total_time_step) | ||
self.writer.add_scalar('Train/Episode Len', episode_len, self.total_time_step) | ||
print(f"[{self.total_time_step}/{self.training_steps}] episode: {episode_idx} episode reward: {episode_reward} episode len: {episode_len} epsilon: {self.epsilon}") | ||
break | ||
|
||
observation = next_observation | ||
self.total_time_step += 1 | ||
|
||
if episode_idx % self.eval_interval == 0: | ||
# save model checkpoint | ||
avg_score = self.evaluate() | ||
self.save(os.path.join(self.writer.log_dir, f"model_{self.total_time_step}_{int(avg_score)}.pth")) | ||
self.writer.add_scalar('Evaluate/Episode Reward', avg_score, self.total_time_step) | ||
|
||
def evaluate(self): | ||
print("==============================================") | ||
print("Evaluating...") | ||
all_rewards = [] | ||
for i in range(self.eval_episode): | ||
observation, info = self.test_env.reset() | ||
total_reward = 0 | ||
while True: | ||
self.test_env.render() | ||
action = self.decide_agent_actions(observation, self.eval_epsilon, self.test_env.action_space) | ||
next_observation, reward, terminate, truncate, info = self.test_env.step(action) | ||
total_reward += reward | ||
if terminate or truncate: | ||
print(f"episode {i+1} reward: {total_reward}") | ||
all_rewards.append(total_reward) | ||
break | ||
|
||
observation = next_observation | ||
|
||
|
||
avg = sum(all_rewards) / self.eval_episode | ||
print(f"average score: {avg}") | ||
print("==============================================") | ||
return avg | ||
|
||
# save model | ||
def save(self, save_path): | ||
torch.save(self.behavior_net.state_dict(), save_path) | ||
|
||
# load model | ||
def load(self, load_path): | ||
self.behavior_net.load_state_dict(torch.load(load_path)) | ||
|
||
# load model weights and evaluate | ||
def load_and_evaluate(self, load_path): | ||
self.load(load_path) | ||
self.evaluate() | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
import torch | ||
import torch.nn as nn | ||
import numpy as np | ||
from torch.utils.tensorboard import SummaryWriter | ||
from base_agent import DQNBaseAgent | ||
from models.atari_model import AtariNetDQN | ||
import gym | ||
import random | ||
from gym.wrappers import FrameStack | ||
import cv2 | ||
from replay_buffer.replay_buffer import ReplayMemory | ||
import sys | ||
|
||
def transform(frames): | ||
new_frames=[] | ||
for img in frames: | ||
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | ||
img = img[:172,:] | ||
img = cv2.resize(img,(84,84)) | ||
new_frames.append(img) | ||
return np.array(new_frames) | ||
|
||
class MyReplayMemory(ReplayMemory): | ||
def __init__(self, capacity, action_space_n): | ||
super().__init__(capacity) | ||
self.action_space_n = action_space_n | ||
def append(self, *transition): | ||
state, action, reward, next_state, done = transition | ||
|
||
state=transform(state) | ||
next_state=transform(next_state) | ||
|
||
# cv2.imwrite("1.png",state[-1]) | ||
|
||
self.buffer.append((state, action, reward, next_state, done)) | ||
|
||
def sample(self, batch_size, device): | ||
transitions = random.sample(self.buffer, batch_size) | ||
state, action, reward, next_state, done = zip(*transitions) | ||
return ( | ||
torch.tensor(np.array(state),dtype=torch.float,device=device), | ||
torch.tensor(action,dtype=torch.int64,device=device), | ||
torch.tensor(reward,dtype=torch.float,device=device), | ||
torch.tensor(np.array(next_state),dtype=torch.float,device=device), | ||
1 - torch.tensor(done,dtype=torch.float,device=device) | ||
) | ||
|
||
class AtariDQNAgent(DQNBaseAgent): | ||
def __init__(self, config): | ||
super(AtariDQNAgent, self).__init__(config) | ||
|
||
### TODO ### | ||
# initialize env | ||
# self.env = ??? | ||
|
||
self.test_env = FrameStack(gym.make(config['env_id'],render_mode='human'),4) | ||
self.env = FrameStack(gym.make(config['env_id']),4) | ||
|
||
self.replay_buffer = MyReplayMemory(int(config["replay_buffer_capacity"]),self.env.action_space.n) | ||
|
||
# initialize behavior network and target network | ||
self.behavior_net = AtariNetDQN(self.env.action_space.n) | ||
self.behavior_net.to(self.device) | ||
self.target_net = AtariNetDQN(self.env.action_space.n) | ||
self.target_net.to(self.device) | ||
|
||
if len(sys.argv) > 1: | ||
self.load(sys.argv[1]) | ||
self.target_net.load_state_dict(self.behavior_net.state_dict()) | ||
|
||
# initialize optimizer | ||
self.lr = config["learning_rate"] | ||
self.optim = torch.optim.Adam(self.behavior_net.parameters(), lr=self.lr, eps=1.5e-4) | ||
|
||
def decide_agent_actions(self, observation, epsilon=0.0, action_space : gym.Space=None): | ||
### TODO ### | ||
# get action from behavior net, with epsilon-greedy selection | ||
|
||
if random.random() < epsilon: | ||
return random.randint(0, action_space.n-1) | ||
|
||
with torch.no_grad(): | ||
x=torch.tensor(np.array([transform(observation)]),dtype=torch.float, device=self.device) | ||
y=self.behavior_net(x) | ||
return int(torch.argmax(y)) | ||
|
||
def update_behavior_network(self): | ||
# sample a minibatch of transitions | ||
state, action, reward, next_state, yet = self.replay_buffer.sample(self.batch_size, self.device) | ||
self.behavior_net.train() | ||
|
||
### TODO ### | ||
# calculate the loss and update the behavior network | ||
# 1. get max_a Q(s',a) from target net | ||
# 2. calculate Q_target = r + gamma * max_a Q(s',a) | ||
# 3. get Q(s,a) from behavior net | ||
# 4. calculate loss between Q(s,a) and Q_target | ||
# 5. update behavior net | ||
|
||
with torch.no_grad(): | ||
q_next = self.target_net(next_state) | ||
q_next : torch.Tensor = torch.max(q_next, dim = 1)[0] | ||
q_next = q_next.reshape(self.batch_size, 1) | ||
|
||
# if episode terminates at next_state, then q_target = reward | ||
q_target = self.gamma * q_next * yet + reward | ||
|
||
q_value : torch.Tensor = self.behavior_net(state) | ||
q_value = q_value.gather(1,action) | ||
|
||
criterion = torch.nn.MSELoss() | ||
loss = criterion(q_value, q_target) | ||
|
||
self.writer.add_scalar('DQN/Loss', loss.item(), self.total_time_step) | ||
|
||
self.optim.zero_grad() | ||
loss.backward() | ||
self.optim.step() | ||
|
||
self.behavior_net.eval() | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
from dqn_agent_atari import AtariDQNAgent | ||
|
||
if __name__ == '__main__': | ||
# my hyperparameters, you can change it as you like | ||
config = { | ||
"gpu": True, | ||
"training_steps": 1e8, | ||
"gamma": 0.99, | ||
"batch_size": 32, | ||
"eps_min": 0.1, | ||
"warmup_steps": 20000, | ||
"eps_decay": 1000000, | ||
"eval_epsilon": 0.01, | ||
"replay_buffer_capacity": 100000, | ||
"logdir": 'log/DQN/', | ||
"update_freq": 4, | ||
"update_target_freq": 10000, | ||
"learning_rate": 0.0000625, | ||
"eval_interval": 100, | ||
"eval_episode": 5, | ||
"env_id": 'ALE/MsPacman-v5', | ||
} | ||
agent = AtariDQNAgent(config) | ||
agent.train() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
class AtariNetDQN(nn.Module): | ||
def __init__(self, num_classes=4, init_weights=True): | ||
super(AtariNetDQN, self).__init__() | ||
self.cnn = nn.Sequential(nn.Conv2d(4, 32, kernel_size=8, stride=4), | ||
nn.ReLU(True), | ||
nn.Conv2d(32, 64, kernel_size=4, stride=2), | ||
nn.ReLU(True), | ||
nn.Conv2d(64, 64, kernel_size=3, stride=1), | ||
nn.ReLU(True) | ||
) | ||
self.classifier = nn.Sequential(nn.Linear(7*7*64, 512), | ||
nn.ReLU(True), | ||
nn.Linear(512, num_classes) | ||
) | ||
|
||
if init_weights: | ||
self._initialize_weights() | ||
|
||
def forward(self, x): | ||
x = x.float() / 255. | ||
x = self.cnn(x) | ||
x = torch.flatten(x, start_dim=1) | ||
x = self.classifier(x) | ||
return x | ||
|
||
def _initialize_weights(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||
if m.bias is not None: | ||
nn.init.constant_(m.bias, 0.0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
nn.init.constant_(m.weight, 1.0) | ||
nn.init.constant_(m.bias, 0.0) | ||
elif isinstance(m, nn.Linear): | ||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||
nn.init.constant_(m.bias, 0.0) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
import numpy as np | ||
import torch | ||
from collections import deque | ||
import random | ||
|
||
class ReplayMemory(object): | ||
def __init__(self, capacity): | ||
self.buffer = deque(maxlen=capacity) | ||
|
||
def __len__(self): | ||
return len(self.buffer) | ||
|
||
def append(self, *transition): | ||
"""Saves a transition""" | ||
self.buffer.append(tuple(map(tuple, transition))) | ||
|
||
def sample(self, batch_size, device): | ||
"""Sample a batch of transitions""" | ||
transitions = random.sample(self.buffer, batch_size) | ||
return (torch.tensor(np.asarray(x), dtype=torch.float, device=device) for x in zip(*transitions)) | ||
|