Skip to content

Commit

Permalink
update test_drscorer
Browse files Browse the repository at this point in the history
  • Loading branch information
kgao committed May 18, 2023
1 parent 967b1a6 commit fcaf891
Showing 1 changed file with 71 additions and 72 deletions.
143 changes: 71 additions & 72 deletions econml/tests/test_drscorer.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,85 +3,84 @@

import unittest
import numpy as np

from econml.sklearn_extensions.linear_model import StatsModelsLinearRegression
np.set_printoptions(suppress=True)
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression, LogisticRegression
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from joblib import Parallel, delayed

from econml.dml import DML, LinearDML, SparseLinearDML, NonParamDML
from econml.metalearners import XLearner, TLearner, SLearner, DomainAdaptationLearner
from econml.dr import DRLearner
from econml.score import DRScorer
import scipy.special
from sklearn.linear_model import LassoCV
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.utils import check_random_state


def _fit_model(name, model, Y, T, X):
return name, model.fit(Y, T, X=X)


class TestDRScorer(unittest.TestCase):

def _get_data(self):
class TestDRLearner(unittest.TestCase):
def test_default_models(self):
np.random.seed(123)
X = np.random.normal(size=(1000, 3))
T = np.random.binomial(2, scipy.special.expit(X[:, 0]))
sigma = 0.001
y = (1 + .5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,))
return y, T, X, X[:, 0]
y = (1 + 0.5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,))
est = DRLearner()
est.fit(y, T, X=X, W=None)
assert est.const_marginal_effect(X[:2]).shape == (2, 2)
assert est.effect(X[:2], T0=0, T1=1).shape == (2,)
assert isinstance(est.score_, float)
assert isinstance(est.score(y, T, X=X), float)
assert len(est.model_cate(T=1).coef_.shape) == 1
assert len(est.model_cate(T=2).coef_.shape) == 1
assert isinstance(est.cate_feature_names(), list)
assert isinstance(est.models_regression[0][0].coef_, np.ndarray)
assert isinstance(est.models_propensity[0][0].coef_, np.ndarray)

def test_comparison(self):
def reg():
return LinearRegression()

def clf():
return LogisticRegression()
def test_custom_models(self):
np.random.seed(123)
X = np.random.normal(size=(1000, 3))
T = np.random.binomial(2, scipy.special.expit(X[:, 0]))
sigma = 0.01
y = (1 + 0.5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,))
est = DRLearner(
model_propensity=RandomForestClassifier(n_estimators=100, min_samples_leaf=10),
model_regression=RandomForestRegressor(n_estimators=100, min_samples_leaf=10),
model_final=LassoCV(cv=3),
featurizer=None
)
est.fit(y, T, X=X, W=None)
assert isinstance(est.score_, float)
assert est.const_marginal_effect(X[:3]).shape == (3, 2)
assert len(est.model_cate(T=2).coef_.shape) == 1
assert isinstance(est.model_cate(T=2).intercept_, float)
assert len(est.model_cate(T=1).coef_.shape) == 1
assert isinstance(est.model_cate(T=1).intercept_, float)

y, T, X, true_eff = self._get_data()
(X_train, X_val, T_train, T_val,
Y_train, Y_val, _, true_eff_val) = train_test_split(X, T, y, true_eff, test_size=.4)
def test_cv_splitting_strategy(self):
np.random.seed(123)
X = np.random.normal(size=(1000, 3))
T = np.random.binomial(2, scipy.special.expit(X[:, 0]))
sigma = 0.001
y = (1 + 0.5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,))
est = DRLearner(cv=2)
est.fit(y, T, X=X, W=None)
assert est.const_marginal_effect(X[:2]).shape == (2, 2)

models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
linear_first_stages=False, cv=3)),
('sldml', SparseLinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
featurizer=PolynomialFeatures(degree=2, include_bias=False),
linear_first_stages=False, cv=3)),
('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
('slearner', SLearner(overall_model=reg())),
('tlearner', TLearner(models=reg())),
('drlearner', DRLearner(model_propensity='auto', model_regression='auto',
model_final=reg(), cv=3)),
('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
discrete_treatment=True, cv=3)),
('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=reg(), discrete_treatment=True,
featurizer=PolynomialFeatures(degree=3),
linear_first_stages=False, cv=3))
]
def test_mc_iters(self):
np.random.seed(123)
X = np.random.normal(size=(1000, 3))
T = np.random.binomial(2, scipy.special.expit(X[:, 0]))
sigma = 0.001
y = (1 + 0.5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,))
est = DRLearner()
est.fit(y, T, X=X, W=None, inference='bootstrap', n_bootstrap_samples=50)

models = Parallel(n_jobs=1, verbose=1)(delayed(_fit_model)(name, mdl,
Y_train, T_train, X_train)
for name, mdl in models)
self.assertAlmostEqual(est.effect(X[:2], T0=0, T1=1, inference='bootstrap', n_bootstrap_samples=50).shape[0], 50)
self.assertAlmostEqual(est.effect_interval(X[:2], T0=0, T1=1, alpha=0.05, inference='bootstrap',
n_bootstrap_samples=50).shape, (2, 50, 2))
self.assertAlmostEqual(est.ortho_summary(X[:2], T0=0, T1=1, inference='bootstrap',
n_bootstrap_samples=50).shape, (2, 2, 5))
self.assertAlmostEqual(est.ortho_intervals(X[:2], T0=0, T1=1, inference='bootstrap', n_bootstrap_samples=50,
method='normal').shape, (2, 2, 2, 2))

scorer = DRScorer(model_propensity='auto',
model_regression='auto',
model_final=StatsModelsLinearRegression(),
multitask_model_final=False,
featurizer=None,
min_propensity=1e-6,
cv=3,
mc_iters=2,
mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
rootpehe_score = [np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
for _, mdl in models]
assert LinearRegression().fit(np.array(rscore).reshape(-1, 1), np.array(rootpehe_score)).coef_ < 0.5
mdl, _ = scorer.best_model([mdl for _, mdl in models])
rootpehe_best = np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
assert rootpehe_best < 1.5 * np.min(rootpehe_score) + 0.05
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
rootpehe_ensemble = np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
assert rootpehe_ensemble < 1.5 * np.min(rootpehe_score) + 0.05
def test_score(self):
np.random.seed(123)
y = np.random.normal(size=(1000,))
T = np.random.binomial(2, 0.5, size=(1000,))
X = np.random.normal(size=(1000, 3))
est = DRScorer()
est.fit(y, T, X=X, W=None)
score = est.score()
self.assertAlmostEqual(score, 0.05778546)

0 comments on commit fcaf891

Please sign in to comment.