Skip to content

Commit

Permalink
Merge pull request #31 from pygod-team/dev
Browse files Browse the repository at this point in the history
update for v0.2.0
  • Loading branch information
kayzliu authored Apr 29, 2022
2 parents d037b67 + 78a4eb1 commit 61a666a
Show file tree
Hide file tree
Showing 40 changed files with 3,667 additions and 970 deletions.
5 changes: 5 additions & 0 deletions CHANGES.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,7 @@
v<0.1.0>, <04/01/2022> -- Initial release.
v<0.1.1>, <04/04/2022> -- Improvements on stability.
v<0.2.0>, <04/14/2022> -- Support mini-batch and sampling.
v<0.2.0>, <04/23/2022> -- Unify the default device choice with robust check.
v<0.2.0>, <04/23/2022> -- Add CoLA, ANEMONE, CONAD.


86 changes: 49 additions & 37 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -40,19 +40,17 @@ suspicious activities in social networks [#Dou2020Enhancing]_ and security syst

PyGOD includes more than **10** latest graph-based detection algorithms,
such as DOMINANT (SDM'19) and GUIDE (BigData'21).
For consistently and accessibility, PyGOD is developed on top of `PyTorch Geometric (PyG) <https://www.pyg.org/>`_
For consistency and accessibility, PyGOD is developed on top of `PyTorch Geometric (PyG) <https://www.pyg.org/>`_
and `PyTorch <https://pytorch.org/>`_, and follows the API design of `PyOD <https://github.com/yzhao062/pyod>`_.
See examples below for detecting outliers with PyGOD in 5 lines!

**PyGOD** is under actively developed and will be updated frequently!
Please **star**, **watch**, and **fork**.


**PyGOD is featured for**:

* **Unified APIs, detailed documentation, and interactive examples** across various graph-based algorithms.
* **Comprehensive coverage** of more than 10 latest graph outlier detectors.
* **Full support of detections at multiple levels**, such as node-, edge-, and graph-level tasks (WIP).
* **Full support of detections at multiple levels**, such as node-, edge- (WIP), and graph-level tasks (WIP).
* **Scalable design for processing large graphs** via mini-batch and sampling.
* **Streamline data processing with PyG**--fully compatible with PyG data objects.

**Outlier Detection Using PyGOD with 5 Lines of Code**\ :
Expand All @@ -63,31 +61,33 @@ Please **star**, **watch**, and **fork**.
# train a dominant detector
from pygod.models import DOMINANT
model = DOMINANT() # hyperparameters can be set here
model = DOMINANT(num_layers=4, epoch=20) # hyperparameters can be set here
model.fit(data) # data is a Pytorch Geometric data object
# get outlier scores on the input data
outlier_scores = model.decision_scores # raw outlier scores on the input data
# predict on the new data
# predict on the new data in the inductive setting
outlier_scores = model.decision_function(test_data) # raw outlier scores on the input data # predict raw outlier scores on test
**Citing PyGOD (to be announced soon)**\ :
`PyGOD paper <https://pygod.org>`_ will be available on arxiv soon.
**Citing PyGOD**\ :

`PyGOD paper <https://arxiv.org/abs/2204.12095>`_ is available on arxiv.
If you use PyGOD in a scientific publication, we would appreciate
citations to the following paper (to be announced)::
citations to the following paper::

@article{tba,
author = {tba},
title = {PyGOD: A Comprehensive Python Library for Graph Outlier Detection},
journal = {tba},
@article{pygod2022,
author = {Liu, Kay and Dou, Yingtong and Zhao, Yue and Ding, Xueying and Hu, Xiyang and Zhang, Ruitong and Ding, Kaize and Chen, Canyu and Peng, Hao and Shu, Kai and Chen, George H. and Jia, Zhihao and Yu, Philip S.},
title = {PyGOD: A Python Library for Graph Outlier Detection},
journal = {arXiv preprint arXiv:2204.12095},
year = {2022},
}

or::

tba, 2022. PyGOD: A Comprehensive Python Library for Graph Outlier Detection. tba.
Liu, K., Dou, Y., Zhao, Y., Ding, X., Hu, X., Zhang, R., Ding, K., Chen, C., Peng, H., Shu, K., Chen, G.H., Jia, Z., and Yu, P.S. 2022. PyGOD: A Python Library for Graph Outlier Detection. arXiv preprint arXiv:2204.12095.



----
Expand All @@ -114,11 +114,9 @@ Alternatively, you could clone and run setup.py file:
**Required Dependencies**\ :

* Python 3.6 +
* argparse>=1.4.0
* numpy>=1.19.4
* scikit-learn>=0.22.1
* scipy>=1.5.2
* pandas>=1.1.3
* setuptools>=50.3.1.post20201107


Expand All @@ -139,21 +137,25 @@ API Cheatsheet & Reference

Full API Reference: (https://docs.pygod.org). API cheatsheet for all detectors:


* **fit(X)**\ : Fit detector.
* **decision_function(G)**\ : Predict raw anomaly score of PyG data G using the fitted detector.
* **predict(G)**\ : Predict if nodes in PyG data G is an outlier or not using the fitted detector.
* **predict_proba(G)**\ : Predict the probability of nodes in PyG data G being outlier using the fitted detector.
* **predict_confidence(G)**\ : Predict the model's node-wise confidence (available in predict and predict_proba) [#Perini2020Quantifying]_.


Key Attributes of a fitted model:


* **decision_scores_**\ : The outlier scores of the training data. The higher, the more abnormal.
Outliers tend to have higher scores.
* **labels_**\ : The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies.

For the inductive setting:

* **predict(G)**\ : Predict if nodes in PyG data G is an outlier or not using the fitted detector.
* **predict_proba(G)**\ : Predict the probability of nodes in PyG data G being outlier using the fitted detector.
* **predict_confidence(G)**\ : Predict the model's node-wise confidence (available in predict and predict_proba) [#Perini2020Quantifying]_.


**Input of PyGOD**: Please pass in a `PyTorch Geometric (PyG) <https://www.pyg.org/>`_ data object.
See `PyG data processing examples <https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html#data-handling-of-graphs>`_.


Implemented Algorithms
^^^^^^^^^^^^^^^^^^^^^^
Expand All @@ -162,20 +164,23 @@ PyGOD toolkit consists of two major functional groups:

**(i) Node-level detection** :

=================== =================== ================== ====================================================================================================== ===== ========================================
Type Backbone Abbr Algorithm Year Ref
=================== =================== ================== ====================================================================================================== ===== ========================================
Unsupervised MLP MLPAE Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction 2014 [#Sakurada2014Anomaly]_
Unsupervised GNN GCNAE Variational Graph Auto-Encoders 2016 [#Kipf2016Variational]_
Unsupervised MF ONE Outlier aware network embedding for attributed networks 2019 [#Bandyopadhyay2019Outlier]_
Unsupervised GNN DOMINANT Deep anomaly detection on attributed networks 2019 [#Ding2019Deep]_
Unsupervised GNN DONE Outlier Resistant Unsupervised Deep Architectures for Attributed Network Embedding 2020 [#Bandyopadhyay2020Outlier]_
Unsupervised GNN AdONE Outlier Resistant Unsupervised Deep Architectures for Attributed Network Embedding 2020 [#Bandyopadhyay2020Outlier]_
Unsupervised GNN AnomalyDAE AnomalyDAE: Dual autoencoder for anomaly detection on attributed networks 2020 [#Fan2020AnomalyDAE]_
Unsupervised GAN GAAN Generative Adversarial Attributed Network Anomaly Detection 2020 [#Chen2020Generative]_
Unsupervised GNN OCGNN One-Class Graph Neural Networks for Anomaly Detection in Attributed Networks 2021 [#Wang2021One]_
Unsupervised GNN GUIDE Higher-order Structure Based Anomaly Detection on Attributed Networks 2021 [#Yuan2021Higher]_
=================== =================== ================== ====================================================================================================== ===== ========================================
=================== =================== ================== ===== =========== ========================================
Type Backbone Abbr Year Sampling Ref
=================== =================== ================== ===== =========== ========================================
Unsupervised MLP MLPAE 2014 Yes [#Sakurada2014Anomaly]_
Unsupervised GNN GCNAE 2016 Yes [#Kipf2016Variational]_
Unsupervised MF ONE 2019 No [#Bandyopadhyay2019Outlier]_
Unsupervised GNN DOMINANT 2019 Yes [#Ding2019Deep]_
Unsupervised GNN DONE 2020 Yes [#Bandyopadhyay2020Outlier]_
Unsupervised GNN AdONE 2020 Yes [#Bandyopadhyay2020Outlier]_
Unsupervised GNN AnomalyDAE 2020 Yes [#Fan2020AnomalyDAE]_
Unsupervised GAN GAAN 2020 Yes [#Chen2020Generative]_
Unsupervised GNN OCGNN 2021 Yes [#Wang2021One]_
Unsupervised/SSL GNN CoLA (beta) 2021 In progress [#Liu2021Anomaly]_
Unsupervised/SSL GNN ANEMONE (beta) 2021 In progress [#Jin2021ANEMONE]_
Unsupervised GNN GUIDE 2021 Yes [#Yuan2021Higher]_
Unsupervised/SSL GNN CONAD 2022 Yes [#Xu2022Contrastive]_
=================== =================== ================== ===== =========== ========================================

**(ii) Utility functions** :

Expand All @@ -185,6 +190,7 @@ Type Name Function
Metric eval_precision_at_k Calculating Precision@k `eval_precision_at_k <https://docs.pygod.org/en/latest/pygod.utils.html#pygod.utils.metric.eval_precision_at_k>`_
Metric eval_recall_at_k Calculating Recall@k `eval_recall_at_k <https://docs.pygod.org/en/latest/pygod.utils.html#pygod.utils.metric.eval_recall_at_k>`_
Metric eval_roc_auc Calculating ROC-AUC Score `eval_roc_auc <https://docs.pygod.org/en/latest/pygod.utils.html#pygod.utils.metric.eval_roc_auc>`_
Metric eval_average_precision Calculating average precision `eval_average_precision <https://docs.pygod.org/en/latest/pygod.utils.html#pygod.utils.metric.eval_average_precision>`_
Data gen_structure_outliers Generating structural outliers `gen_structure_outliers <https://docs.pygod.org/en/latest/pygod.utils.html#pygod.utils.outlier_generator.gen_structure_outliers>`_
Data gen_attribute_outliers Generating attribute outliers `gen_attribute_outliers <https://docs.pygod.org/en/latest/pygod.utils.html#pygod.utils.outlier_generator.gen_attribute_outliers>`_
=================== ====================== ================================== ======================================================================================================================================
Expand Down Expand Up @@ -255,4 +261,10 @@ Reference
.. [#Wang2021One] Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y. and Yang, Y., 2021. One-class graph neural networks for anomaly detection in attributed networks. Neural computing and applications.
.. [#Liu2021Anomaly] Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C. and Karypis, G., 2021. Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE transactions on neural networks and learning systems (TNNLS).
.. [#Jin2021ANEMONE] Jin, M., Liu, Y., Zheng, Y., Chi, L., Li, Y. and Pan, S., 2021. ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM).
.. [#Yuan2021Higher] Yuan, X., Zhou, N., Yu, S., Huang, H., Chen, Z. and Xia, F., 2021, December. Higher-order Structure Based Anomaly Detection on Attributed Networks. In 2021 IEEE International Conference on Big Data (Big Data).
.. [#Xu2022Contrastive] Xu, Z., Huang, X., Zhao, Y., Dong, Y., and Li, J., 2022. Contrastive Attributed Network Anomaly Detection with Data Augmentation. In Proceedings of the 26th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD).
13 changes: 8 additions & 5 deletions docs/api_cc.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,22 +5,25 @@ The following APIs are applicable for all detector models for easy use.

* :func:`pygod.models.base.BaseDetector.fit`: Fit detector. y is ignored in unsupervised methods.
* :func:`pygod.models.base.BaseDetector.decision_function`: Predict raw anomaly scores of PyG Graph G using the fitted detector
* :func:`pygod.models.base.BaseDetector.predict`: Predict if a particular sample is an outlier or not using the fitted detector.
* :func:`pygod.models.base.BaseDetector.predict_proba`: Predict the probability of a sample being outlier using the fitted detector.
* :func:`pygod.models.base.BaseDetector.predict_confidence`: Predict the model's sample-wise confidence (available in predict and predict_proba).
* :func:`pygod.models.base.BaseDetector.process_graph` (you do not need to call this explicitly): Process the raw PyG data object into a tuple of sub data objects needed for the underlying model.


Key Attributes of a fitted model:

* :attr:`pygod.models.base.BaseDetector.decision_scores_`: The outlier scores of the training data. The higher, the more abnormal.
Outliers tend to have higher scores.
* :attr:`pygod.models.base.BaseDetector.labels_`: The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies.

For the inductive setting:

* :func:`pygod.models.base.BaseDetector.predict`: Predict if a particular sample is an outlier or not using the fitted detector.
* :func:`pygod.models.base.BaseDetector.predict_proba`: Predict the probability of a sample being outlier using the fitted detector.
* :func:`pygod.models.base.BaseDetector.predict_confidence`: Predict the model's sample-wise confidence (available in predict and predict_proba).


**Input of PyGOD**: Please pass in a `PyTorch Geometric (PyG) <https://www.pyg.org/>`_ data object.
See `PyG data processing examples <https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html#data-handling-of-graphs>`_.

* :func:`pygod.models.base.BaseDetector.process_graph` (you do not need to call this explicitly): Process the raw PyG data object into a tuple of sub data objects needed for the underlying model.


See base class definition below:

Expand Down
11 changes: 6 additions & 5 deletions docs/examples/intro.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
"""
DOMINANT Example
Model Example
================
In this introductory tutorial, you will learn the basic workflow of
PyGOD. This tutorial assumes that you have basic familiarity with
PyTorch and PyTorch Geometric (PyG).
PyGOD with a model example of DOMINANT. This tutorial assumes that
you have basic familiarity with PyTorch and PyTorch Geometric (PyG).
(Time estimate: 5 minutes)
"""
Expand Down Expand Up @@ -63,8 +63,9 @@
#######################################################################
# Inference
# ---------
# Then, your model is ready to use. We provide several inference methods.
#######################################################################
# Then, your model is ready to use.
# We provide several inference methods.
#
# To predict the labels only:


Expand Down
Loading

0 comments on commit 61a666a

Please sign in to comment.