-
Notifications
You must be signed in to change notification settings - Fork 327
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ghstack-source-id: e1a6c874a6794afd650de2bf44bb483a3f814c12 Pull Request resolved: #2389
- Loading branch information
Showing
4 changed files
with
364 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
# task and env | ||
env: | ||
name: HalfCheetah-v4 # Use v4 to get rid of mujoco-py dependency | ||
task: "" | ||
library: gymnasium | ||
seed: 42 | ||
max_episode_steps: 1000 | ||
|
||
# collector | ||
collector: | ||
total_frames: 1000000 | ||
init_random_frames: 25_000 | ||
init_env_steps: 1000 | ||
frames_per_batch: 1000 | ||
reset_at_each_iter: False | ||
device: cpu | ||
env_per_collector: 1 | ||
num_workers: 8 | ||
|
||
# replay buffer | ||
replay_buffer: | ||
prb: 0 # use prioritized experience replay | ||
size: 1000000 | ||
scratch_dir: null | ||
|
||
# optim | ||
optim: | ||
utd_ratio: 1.0 | ||
gamma: 0.99 | ||
loss_function: l2 | ||
lr: 3.0e-4 | ||
weight_decay: 0.0 | ||
adam_eps: 1e-4 | ||
batch_size: 256 | ||
target_update_polyak: 0.995 | ||
policy_update_delay: 2 | ||
policy_noise: 0.2 | ||
noise_clip: 0.5 | ||
|
||
# network | ||
network: | ||
hidden_sizes: [256, 256] | ||
activation: relu | ||
device: null | ||
|
||
# logging | ||
logger: | ||
backend: wandb | ||
project_name: torchrl_example_td3 | ||
group_name: null | ||
exp_name: ${env.name}_TD3 | ||
mode: online | ||
eval_iter: 25000 | ||
video: False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
"""TD3 Example. | ||
This is a simple self-contained example of a TD3 training script. | ||
It supports state environments like MuJoCo. | ||
The helper functions are coded in the utils.py associated with this script. | ||
""" | ||
import time | ||
|
||
import hydra | ||
import numpy as np | ||
import torch | ||
import torch.cuda | ||
import tqdm | ||
from torchrl._utils import logger as torchrl_logger | ||
from torchrl.data.utils import CloudpickleWrapper | ||
|
||
from torchrl.envs.utils import ExplorationType, set_exploration_type | ||
|
||
from torchrl.record.loggers import generate_exp_name, get_logger | ||
from utils import ( | ||
log_metrics, | ||
make_async_collector, | ||
make_environment, | ||
make_loss_module, | ||
make_optimizer, | ||
make_replay_buffer, | ||
make_simple_environment, | ||
make_td3_agent, | ||
) | ||
|
||
|
||
@hydra.main(version_base="1.1", config_path="", config_name="config-fast") | ||
def main(cfg: "DictConfig"): # noqa: F821 | ||
device = cfg.network.device | ||
if device in ("", None): | ||
if torch.cuda.is_available(): | ||
device = torch.device("cuda:0") | ||
else: | ||
device = torch.device("cpu") | ||
device = torch.device(device) | ||
|
||
# Create logger | ||
exp_name = generate_exp_name("TD3", cfg.logger.exp_name) | ||
logger = None | ||
if cfg.logger.backend: | ||
logger = get_logger( | ||
logger_type=cfg.logger.backend, | ||
logger_name="td3_logging", | ||
experiment_name=exp_name, | ||
wandb_kwargs={ | ||
"mode": cfg.logger.mode, | ||
"config": dict(cfg), | ||
"project": cfg.logger.project_name, | ||
"group": cfg.logger.group_name, | ||
}, | ||
) | ||
|
||
# Set seeds | ||
torch.manual_seed(cfg.env.seed) | ||
np.random.seed(cfg.env.seed) | ||
|
||
# Create environments | ||
train_env, eval_env = make_environment(cfg, logger=logger) | ||
|
||
# Create agent | ||
model, exploration_policy = make_td3_agent(cfg, train_env, eval_env, device) | ||
|
||
# Create TD3 loss | ||
loss_module, target_net_updater = make_loss_module(cfg, model) | ||
|
||
# Create replay buffer | ||
replay_buffer = make_replay_buffer( | ||
batch_size=cfg.optim.batch_size, | ||
prb=cfg.replay_buffer.prb, | ||
buffer_size=cfg.replay_buffer.size, | ||
scratch_dir=cfg.replay_buffer.scratch_dir, | ||
device="cpu", | ||
prefetch=0, | ||
mmap=False, | ||
) | ||
reshape = CloudpickleWrapper(lambda td: td.reshape(-1)) | ||
replay_buffer.append_transform(reshape, invert=True) | ||
|
||
# Create off-policy collector | ||
envname = cfg.env.name | ||
task = cfg.env.task | ||
library = cfg.env.library | ||
seed = cfg.env.seed | ||
max_episode_steps = cfg.env.max_episode_steps | ||
collector = make_async_collector( | ||
cfg, | ||
lambda: make_simple_environment( | ||
envname, task, library, seed, max_episode_steps | ||
), | ||
exploration_policy, | ||
replay_buffer, | ||
) | ||
|
||
# Create optimizers | ||
optimizer_actor, optimizer_critic = make_optimizer(cfg, loss_module) | ||
|
||
# Main loop | ||
start_time = time.time() | ||
collected_frames = 0 | ||
pbar = tqdm.tqdm(total=cfg.collector.total_frames) | ||
|
||
init_random_frames = cfg.collector.init_random_frames | ||
num_updates = int( | ||
max(1, cfg.collector.env_per_collector) | ||
* cfg.collector.frames_per_batch | ||
* cfg.optim.utd_ratio | ||
) | ||
delayed_updates = cfg.optim.policy_update_delay | ||
prb = cfg.replay_buffer.prb | ||
update_counter = 0 | ||
|
||
sampling_start = time.time() | ||
current_frames = cfg.collector.frames_per_batch | ||
update_actor = False | ||
|
||
test_env = make_simple_environment(envname, task, library, seed, max_episode_steps) | ||
with set_exploration_type(ExplorationType.DETERMINISTIC), torch.no_grad(): | ||
reward = test_env.rollout(10_000, exploration_policy)["next", "reward"].mean() | ||
print(f"reward before training: {reward: 4.4f}") | ||
|
||
for _ in collector: | ||
sampling_time = time.time() - sampling_start | ||
exploration_policy[1].step(current_frames) | ||
|
||
# Update weights of the inference policy | ||
collector.update_policy_weights_() | ||
|
||
pbar.update(current_frames) | ||
|
||
# Add to replay buffer | ||
collected_frames += current_frames | ||
|
||
# Optimization steps | ||
training_start = time.time() | ||
loss_module.value_loss = torch.compile( | ||
loss_module.value_loss, mode="reduce-overhead" | ||
) | ||
loss_module.actor_loss = torch.compile( | ||
loss_module.actor_loss, mode="reduce-overhead" | ||
) | ||
|
||
if collected_frames >= init_random_frames: | ||
( | ||
actor_losses, | ||
q_losses, | ||
) = ([], []) | ||
for _ in range(num_updates): | ||
|
||
# Update actor every delayed_updates | ||
update_counter += 1 | ||
update_actor = update_counter % delayed_updates == 0 | ||
|
||
# Sample from replay buffer | ||
sampled_tensordict = replay_buffer.sample() | ||
if sampled_tensordict.device != device: | ||
sampled_tensordict = sampled_tensordict.to( | ||
device, non_blocking=True | ||
) | ||
else: | ||
sampled_tensordict = sampled_tensordict.clone() | ||
|
||
# Compute loss | ||
q_loss, *_ = loss_module.value_loss(sampled_tensordict) | ||
|
||
# Update critic | ||
optimizer_critic.zero_grad() | ||
q_loss.backward() | ||
optimizer_critic.step() | ||
q_losses.append(q_loss.item()) | ||
|
||
# Update actor | ||
if update_actor: | ||
actor_loss, *_ = loss_module.actor_loss(sampled_tensordict) | ||
optimizer_actor.zero_grad() | ||
actor_loss.backward() | ||
optimizer_actor.step() | ||
|
||
actor_losses.append(actor_loss.item()) | ||
|
||
# Update target params | ||
target_net_updater.step() | ||
|
||
# Update priority | ||
if prb: | ||
replay_buffer.update_priority(sampled_tensordict) | ||
|
||
training_time = time.time() - training_start | ||
|
||
# Logging | ||
metrics_to_log = {} | ||
if collected_frames >= init_random_frames: | ||
metrics_to_log["train/q_loss"] = np.mean(q_losses) | ||
if update_actor: | ||
metrics_to_log["train/a_loss"] = np.mean(actor_losses) | ||
metrics_to_log["train/sampling_time"] = sampling_time | ||
metrics_to_log["train/training_time"] = training_time | ||
|
||
if logger is not None: | ||
log_metrics(logger, metrics_to_log, collected_frames) | ||
sampling_start = time.time() | ||
|
||
collector.shutdown() | ||
if not eval_env.is_closed: | ||
eval_env.close() | ||
if not train_env.is_closed: | ||
train_env.close() | ||
|
||
with set_exploration_type(ExplorationType.DETERMINISTIC), torch.no_grad(): | ||
reward = test_env.rollout(10_000, exploration_policy)["next", "reward"].mean() | ||
print(f"reward before training: {reward: 4.4f}") | ||
test_env.close() | ||
|
||
end_time = time.time() | ||
execution_time = end_time - start_time | ||
torchrl_logger.info(f"Training took {execution_time:.2f} seconds to finish") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.