-
Notifications
You must be signed in to change notification settings - Fork 535
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #109 from aclex/mobilenetv3
Support for MobileNetV3 backbones
- Loading branch information
Showing
6 changed files
with
351 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
'''MobileNetV3 in PyTorch. | ||
See the paper "Inverted Residuals and Linear Bottlenecks: | ||
Mobile Networks for Classification, Detection and Segmentation" for more details. | ||
''' | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.nn import init | ||
|
||
|
||
|
||
class hswish(nn.Module): | ||
def forward(self, x): | ||
out = x * F.relu6(x + 3, inplace=True) / 6 | ||
return out | ||
|
||
|
||
class hsigmoid(nn.Module): | ||
def forward(self, x): | ||
out = F.relu6(x + 3, inplace=True) / 6 | ||
return out | ||
|
||
|
||
class SeModule(nn.Module): | ||
def __init__(self, in_size, reduction=4): | ||
super(SeModule, self).__init__() | ||
self.se = nn.Sequential( | ||
nn.AdaptiveAvgPool2d(1), | ||
nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(in_size // reduction), | ||
nn.ReLU(inplace=True), | ||
nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(in_size), | ||
hsigmoid() | ||
) | ||
|
||
def forward(self, x): | ||
return x * self.se(x) | ||
|
||
|
||
class Block(nn.Module): | ||
'''expand + depthwise + pointwise''' | ||
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride): | ||
super(Block, self).__init__() | ||
self.stride = stride | ||
self.se = semodule | ||
|
||
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn1 = nn.BatchNorm2d(expand_size) | ||
self.nolinear1 = nolinear | ||
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False) | ||
self.bn2 = nn.BatchNorm2d(expand_size) | ||
self.nolinear2 = nolinear | ||
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn3 = nn.BatchNorm2d(out_size) | ||
|
||
self.shortcut = nn.Sequential() | ||
if stride == 1 and in_size != out_size: | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(out_size), | ||
) | ||
|
||
def forward(self, x): | ||
out = self.nolinear1(self.bn1(self.conv1(x))) | ||
out = self.nolinear2(self.bn2(self.conv2(out))) | ||
out = self.bn3(self.conv3(out)) | ||
if self.se != None: | ||
out = self.se(out) | ||
out = out + self.shortcut(x) if self.stride==1 else out | ||
return out | ||
|
||
|
||
class MobileNetV3_Large(nn.Module): | ||
def __init__(self, num_classes=1000): | ||
super(MobileNetV3_Large, self).__init__() | ||
|
||
self.features = [] | ||
|
||
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) | ||
self.features.append(self.conv1) | ||
self.bn1 = nn.BatchNorm2d(16) | ||
self.features.append(self.bn1) | ||
self.hs1 = hswish() | ||
self.features.append(self.hs1) | ||
|
||
self.bneck = nn.Sequential( | ||
Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1), | ||
Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2), | ||
Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1), | ||
Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2), | ||
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1), | ||
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1), | ||
Block(3, 40, 240, 80, hswish(), None, 2), | ||
Block(3, 80, 200, 80, hswish(), None, 1), | ||
Block(3, 80, 184, 80, hswish(), None, 1), | ||
Block(3, 80, 184, 80, hswish(), None, 1), | ||
Block(3, 80, 480, 112, hswish(), SeModule(112), 1), | ||
Block(3, 112, 672, 112, hswish(), SeModule(112), 1), | ||
Block(5, 112, 672, 160, hswish(), SeModule(160), 1), | ||
Block(5, 160, 672, 160, hswish(), SeModule(160), 2), | ||
Block(5, 160, 960, 160, hswish(), SeModule(160), 1), | ||
) | ||
|
||
self.features.extend([block for block in self.bneck]) | ||
|
||
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.features.append(self.conv2) | ||
self.bn2 = nn.BatchNorm2d(960) | ||
self.features.append(self.bn2) | ||
self.hs2 = hswish() | ||
self.features.append(self.hs2) | ||
|
||
self.linear3 = nn.Linear(960, 1280) | ||
self.bn3 = nn.BatchNorm1d(1280) | ||
self.hs3 = hswish() | ||
self.linear4 = nn.Linear(1280, num_classes) | ||
self.init_params() | ||
|
||
self.features = nn.Sequential(*self.features) | ||
|
||
def init_params(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight, mode='fan_out') | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
init.constant_(m.weight, 1) | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
init.normal_(m.weight, std=0.001) | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
|
||
def forward(self, x): | ||
out = self.hs1(self.bn1(self.conv1(x))) | ||
out = self.bneck(out) | ||
out = self.hs2(self.bn2(self.conv2(out))) | ||
out = F.avg_pool2d(out, 7) | ||
out = out.view(out.size(0), -1) | ||
out = self.hs3(self.bn3(self.linear3(out))) | ||
out = self.linear4(out) | ||
return out | ||
|
||
|
||
|
||
class MobileNetV3_Small(nn.Module): | ||
def __init__(self, num_classes=1000): | ||
super(MobileNetV3_Small, self).__init__() | ||
|
||
self.features = [] | ||
|
||
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) | ||
self.features.append(self.conv1) | ||
self.bn1 = nn.BatchNorm2d(16) | ||
self.features.append(self.bn1) | ||
self.hs1 = hswish() | ||
self.features.append(self.hs1) | ||
|
||
self.bneck = nn.Sequential( | ||
Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2), | ||
Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2), | ||
Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1), | ||
Block(5, 24, 96, 40, hswish(), SeModule(40), 2), | ||
Block(5, 40, 240, 40, hswish(), SeModule(40), 1), | ||
Block(5, 40, 240, 40, hswish(), SeModule(40), 1), | ||
Block(5, 40, 120, 48, hswish(), SeModule(48), 1), | ||
Block(5, 48, 144, 48, hswish(), SeModule(48), 1), | ||
Block(5, 48, 288, 96, hswish(), SeModule(96), 2), | ||
Block(5, 96, 576, 96, hswish(), SeModule(96), 1), | ||
Block(5, 96, 576, 96, hswish(), SeModule(96), 1), | ||
) | ||
|
||
self.features.extend([block for block in self.bneck]) | ||
|
||
self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.features.append(self.conv2) | ||
self.bn2 = nn.BatchNorm2d(576) | ||
self.features.append(self.bn2) | ||
self.hs2 = hswish() | ||
self.features.append(self.hs2) | ||
self.linear3 = nn.Linear(576, 1280) | ||
self.bn3 = nn.BatchNorm1d(1280) | ||
self.hs3 = hswish() | ||
self.linear4 = nn.Linear(1280, num_classes) | ||
self.init_params() | ||
|
||
self.features = nn.Sequential(*self.features) | ||
|
||
def init_params(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight, mode='fan_out') | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
init.constant_(m.weight, 1) | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
init.normal_(m.weight, std=0.001) | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
|
||
def forward(self, x): | ||
out = self.hs1(self.bn1(self.conv1(x))) | ||
out = self.bneck(out) | ||
out = self.hs2(self.bn2(self.conv2(out))) | ||
out = F.avg_pool2d(out, 7) | ||
out = out.view(out.size(0), -1) | ||
out = self.hs3(self.bn3(self.linear3(out))) | ||
out = self.linear4(out) | ||
return out | ||
|
||
|
||
|
||
def test(): | ||
net = MobileNetV3_Small() | ||
x = torch.randn(2,3,224,224) | ||
y = net(x) | ||
print(y.size()) | ||
|
||
# test() |
Oops, something went wrong.
f61ab42
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hi are there weights available for the mobilenetv3 SSD?