-
Notifications
You must be signed in to change notification settings - Fork 535
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initial support of MobileNetV3 backbone
Large flavour only for now.
- Loading branch information
Showing
3 changed files
with
283 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
'''MobileNetV3 in PyTorch. | ||
See the paper "Inverted Residuals and Linear Bottlenecks: | ||
Mobile Networks for Classification, Detection and Segmentation" for more details. | ||
''' | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.nn import init | ||
|
||
|
||
|
||
class hswish(nn.Module): | ||
def forward(self, x): | ||
out = x * F.relu6(x + 3, inplace=True) / 6 | ||
return out | ||
|
||
|
||
class hsigmoid(nn.Module): | ||
def forward(self, x): | ||
out = F.relu6(x + 3, inplace=True) / 6 | ||
return out | ||
|
||
|
||
class SeModule(nn.Module): | ||
def __init__(self, in_size, reduction=4): | ||
super(SeModule, self).__init__() | ||
self.se = nn.Sequential( | ||
nn.AdaptiveAvgPool2d(1), | ||
nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(in_size // reduction), | ||
nn.ReLU(inplace=True), | ||
nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(in_size), | ||
hsigmoid() | ||
) | ||
|
||
def forward(self, x): | ||
return x * self.se(x) | ||
|
||
|
||
class Block(nn.Module): | ||
'''expand + depthwise + pointwise''' | ||
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride): | ||
super(Block, self).__init__() | ||
self.stride = stride | ||
self.se = semodule | ||
|
||
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn1 = nn.BatchNorm2d(expand_size) | ||
self.nolinear1 = nolinear | ||
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False) | ||
self.bn2 = nn.BatchNorm2d(expand_size) | ||
self.nolinear2 = nolinear | ||
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn3 = nn.BatchNorm2d(out_size) | ||
|
||
self.shortcut = nn.Sequential() | ||
if stride == 1 and in_size != out_size: | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(out_size), | ||
) | ||
|
||
def forward(self, x): | ||
out = self.nolinear1(self.bn1(self.conv1(x))) | ||
out = self.nolinear2(self.bn2(self.conv2(out))) | ||
out = self.bn3(self.conv3(out)) | ||
if self.se != None: | ||
out = self.se(out) | ||
out = out + self.shortcut(x) if self.stride==1 else out | ||
return out | ||
|
||
|
||
class MobileNetV3_Large(nn.Module): | ||
def __init__(self, num_classes=1000): | ||
super(MobileNetV3_Large, self).__init__() | ||
|
||
self.features = [] | ||
|
||
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) | ||
self.features.append(self.conv1) | ||
self.bn1 = nn.BatchNorm2d(16) | ||
self.features.append(self.bn1) | ||
self.hs1 = hswish() | ||
self.features.append(self.hs1) | ||
|
||
self.bneck = nn.Sequential( | ||
Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1), | ||
Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2), | ||
Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1), | ||
Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2), | ||
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1), | ||
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1), | ||
Block(3, 40, 240, 80, hswish(), None, 2), | ||
Block(3, 80, 200, 80, hswish(), None, 1), | ||
Block(3, 80, 184, 80, hswish(), None, 1), | ||
Block(3, 80, 184, 80, hswish(), None, 1), | ||
Block(3, 80, 480, 112, hswish(), SeModule(112), 1), | ||
Block(3, 112, 672, 112, hswish(), SeModule(112), 1), | ||
Block(5, 112, 672, 160, hswish(), SeModule(160), 1), | ||
Block(5, 160, 672, 160, hswish(), SeModule(160), 2), | ||
Block(5, 160, 960, 160, hswish(), SeModule(160), 1), | ||
) | ||
|
||
self.features.extend([block for block in self.bneck]) | ||
|
||
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.features.append(self.conv2) | ||
self.bn2 = nn.BatchNorm2d(960) | ||
self.features.append(self.bn2) | ||
self.hs2 = hswish() | ||
self.features.append(self.hs2) | ||
|
||
self.linear3 = nn.Linear(960, 1280) | ||
self.bn3 = nn.BatchNorm1d(1280) | ||
self.hs3 = hswish() | ||
self.linear4 = nn.Linear(1280, num_classes) | ||
self.init_params() | ||
|
||
self.features = nn.Sequential(*self.features) | ||
|
||
def init_params(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight, mode='fan_out') | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
init.constant_(m.weight, 1) | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
init.normal_(m.weight, std=0.001) | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
|
||
def forward(self, x): | ||
out = self.hs1(self.bn1(self.conv1(x))) | ||
out = self.bneck(out) | ||
out = self.hs2(self.bn2(self.conv2(out))) | ||
out = F.avg_pool2d(out, 7) | ||
out = out.view(out.size(0), -1) | ||
out = self.hs3(self.bn3(self.linear3(out))) | ||
out = self.linear4(out) | ||
return out | ||
|
||
|
||
|
||
class MobileNetV3_Small(nn.Module): | ||
def __init__(self, num_classes=1000): | ||
super(MobileNetV3_Small, self).__init__() | ||
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(16) | ||
self.hs1 = hswish() | ||
|
||
self.bneck = nn.Sequential( | ||
Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2), | ||
Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2), | ||
Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1), | ||
Block(5, 24, 96, 40, hswish(), SeModule(40), 2), | ||
Block(5, 40, 240, 40, hswish(), SeModule(40), 1), | ||
Block(5, 40, 240, 40, hswish(), SeModule(40), 1), | ||
Block(5, 40, 120, 48, hswish(), SeModule(48), 1), | ||
Block(5, 48, 144, 48, hswish(), SeModule(48), 1), | ||
Block(5, 48, 288, 96, hswish(), SeModule(96), 2), | ||
Block(5, 96, 576, 96, hswish(), SeModule(96), 1), | ||
Block(5, 96, 576, 96, hswish(), SeModule(96), 1), | ||
) | ||
|
||
|
||
self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn2 = nn.BatchNorm2d(576) | ||
self.hs2 = hswish() | ||
self.linear3 = nn.Linear(576, 1280) | ||
self.bn3 = nn.BatchNorm1d(1280) | ||
self.hs3 = hswish() | ||
self.linear4 = nn.Linear(1280, num_classes) | ||
self.init_params() | ||
|
||
def init_params(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight, mode='fan_out') | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
init.constant_(m.weight, 1) | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
init.normal_(m.weight, std=0.001) | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
|
||
def forward(self, x): | ||
out = self.hs1(self.bn1(self.conv1(x))) | ||
out = self.bneck(out) | ||
out = self.hs2(self.bn2(self.conv2(out))) | ||
out = F.avg_pool2d(out, 7) | ||
out = out.view(out.size(0), -1) | ||
out = self.hs3(self.bn3(self.linear3(out))) | ||
out = self.linear4(out) | ||
return out | ||
|
||
|
||
|
||
def test(): | ||
net = MobileNetV3_Small() | ||
x = torch.randn(2,3,224,224) | ||
y = net(x) | ||
print(y.size()) | ||
|
||
# test() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import torch | ||
from torch.nn import Conv2d, Sequential, ModuleList, BatchNorm2d | ||
from torch import nn | ||
from ..nn.mobilenetv3 import MobileNetV3_Large, Block, hswish | ||
|
||
from .ssd import SSD | ||
from .predictor import Predictor | ||
from .config import mobilenetv1_ssd_config as config | ||
|
||
|
||
def SeperableConv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, onnx_compatible=False): | ||
"""Replace Conv2d with a depthwise Conv2d and Pointwise Conv2d. | ||
""" | ||
ReLU = nn.ReLU if onnx_compatible else nn.ReLU6 | ||
return Sequential( | ||
Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, | ||
groups=in_channels, stride=stride, padding=padding), | ||
BatchNorm2d(in_channels), | ||
ReLU(), | ||
Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1), | ||
) | ||
|
||
|
||
def create_mobilenetv3_ssd_lite(num_classes, width_mult=1.0, use_batch_norm=True, onnx_compatible=False, is_test=False): | ||
base_net = MobileNetV3_Large().features | ||
|
||
source_layer_indexes = [ 16, 20 ] | ||
extras = ModuleList([ | ||
Block(3, 1280, 512, 256, hswish(), stride=2), | ||
Block(3, 512, 256, 128, hswish(), stride=2), | ||
Block(3, 256, 256, 128, hswish(), stride=2), | ||
Block(3, 256, 64, 64, hswish(), stride=2) | ||
]) | ||
|
||
regression_headers = ModuleList([ | ||
SeperableConv2d(in_channels=round(576 * width_mult), out_channels=6 * 4, | ||
kernel_size=3, padding=1, onnx_compatible=False), | ||
SeperableConv2d(in_channels=1280, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False), | ||
SeperableConv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False), | ||
SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False), | ||
SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False), | ||
Conv2d(in_channels=64, out_channels=6 * 4, kernel_size=1), | ||
]) | ||
|
||
classification_headers = ModuleList([ | ||
SeperableConv2d(in_channels=round(576 * width_mult), out_channels=6 * num_classes, kernel_size=3, padding=1), | ||
SeperableConv2d(in_channels=1280, out_channels=6 * num_classes, kernel_size=3, padding=1), | ||
SeperableConv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1), | ||
SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), | ||
SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), | ||
Conv2d(in_channels=64, out_channels=6 * num_classes, kernel_size=1), | ||
]) | ||
|
||
return SSD(num_classes, base_net, source_layer_indexes, | ||
extras, classification_headers, regression_headers, is_test=is_test, config=config) | ||
|
||
|
||
def create_mobilenetv3_ssd_lite_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=torch.device('cpu')): | ||
predictor = Predictor(net, config.image_size, config.image_mean, | ||
config.image_std, | ||
nms_method=nms_method, | ||
iou_threshold=config.iou_threshold, | ||
candidate_size=candidate_size, | ||
sigma=sigma, | ||
device=device) | ||
return predictor |