Skip to content

Commit

Permalink
📝 howto: Be more verbose with the subtree pull
Browse files Browse the repository at this point in the history
  • Loading branch information
mikegerber committed Dec 9, 2019
0 parents commit 4897fd3
Show file tree
Hide file tree
Showing 8 changed files with 1,233 additions and 0 deletions.
Empty file added .gitkeep
Empty file.
26 changes: 26 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Train
just run: python train.py with config_params.json


# Ground truth format

Lables for each pixel is identified by a number . So if you have a binary case n_classes should be set to 2 and
labels should be 0 and 1 for each class and pixel.
In the case of multiclass just set n_classes to the number of classes you have and the try to produce the labels
by pixels set from 0 , 1 ,2 .., n_classes-1.
The labels format should be png.

If you have an image label for binary case it should look like this:

Label: [ [[1 0 0 1], [1 0 0 1] ,[1 0 0 1]], [[1 0 0 1], [1 0 0 1] ,[1 0 0 1]] ,[[1 0 0 1], [1 0 0 1] ,[1 0 0 1]] ]
this means that you have an image by 3*4*3 and pixel[0,0] belongs to class 1 and pixel[0,1] to class 0.

# Training , evaluation and output
train and evaluation folder should have subfolder of images and labels.
And output folder should be empty folder which the output model will be written there.

# Patches

if you want to train your model with patches, the height and width of patches should be defined and also number of
batchs (how many patches should be seen by model by each iteration).
In the case that model should see the image once, like page extraction, the patches should be set to false.
Empty file added __init__.py
Empty file.
24 changes: 24 additions & 0 deletions config_params.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
{
"n_classes" : 2,
"n_epochs" : 2,
"input_height" : 448,
"input_width" : 896,
"weight_decay" : 1e-6,
"n_batch" : 1,
"learning_rate": 1e-4,
"patches" : true,
"pretraining" : true,
"augmentation" : false,
"flip_aug" : false,
"elastic_aug" : false,
"blur_aug" : false,
"scaling" : false,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"rotation": false,
"weighted_loss": true,
"dir_train": "../train",
"dir_eval": "../eval",
"dir_output": "../output"
}
338 changes: 338 additions & 0 deletions metrics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,338 @@
from keras import backend as K
import tensorflow as tf
import numpy as np

def focal_loss(gamma=2., alpha=4.):

gamma = float(gamma)
alpha = float(alpha)

def focal_loss_fixed(y_true, y_pred):
"""Focal loss for multi-classification
FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)
Notice: y_pred is probability after softmax
gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper
d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)
Focal Loss for Dense Object Detection
https://arxiv.org/abs/1708.02002
Arguments:
y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls]
y_pred {tensor} -- model's output, shape of [batch_size, num_cls]
Keyword Arguments:
gamma {float} -- (default: {2.0})
alpha {float} -- (default: {4.0})
Returns:
[tensor] -- loss.
"""
epsilon = 1.e-9
y_true = tf.convert_to_tensor(y_true, tf.float32)
y_pred = tf.convert_to_tensor(y_pred, tf.float32)

model_out = tf.add(y_pred, epsilon)
ce = tf.multiply(y_true, -tf.log(model_out))
weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma))
fl = tf.multiply(alpha, tf.multiply(weight, ce))
reduced_fl = tf.reduce_max(fl, axis=1)
return tf.reduce_mean(reduced_fl)
return focal_loss_fixed

def weighted_categorical_crossentropy(weights=None):
""" weighted_categorical_crossentropy
Args:
* weights<ktensor|nparray|list>: crossentropy weights
Returns:
* weighted categorical crossentropy function
"""

def loss(y_true, y_pred):
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats,logits=y_pred)

if weights is not None:
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
return loss
def image_categorical_cross_entropy(y_true, y_pred, weights=None):
"""
:param y_true: tensor of shape (batch_size, height, width) representing the ground truth.
:param y_pred: tensor of shape (batch_size, height, width) representing the prediction.
:return: The mean cross-entropy on softmaxed tensors.
"""

labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats,logits=y_pred)

if weights is not None:
weight_mask = tf.maximum(
tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]

return tf.reduce_mean(per_pixel_loss)
def class_tversky(y_true, y_pred):
smooth = 1.0#1.00

y_true = K.permute_dimensions(y_true, (3,1,2,0))
y_pred = K.permute_dimensions(y_pred, (3,1,2,0))

y_true_pos = K.batch_flatten(y_true)
y_pred_pos = K.batch_flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos, 1)
false_neg = K.sum(y_true_pos * (1-y_pred_pos), 1)
false_pos = K.sum((1-y_true_pos)*y_pred_pos, 1)
alpha = 0.2#0.5
beta=0.8
return (true_pos + smooth)/(true_pos + alpha*false_neg + (beta)*false_pos + smooth)

def focal_tversky_loss(y_true,y_pred):
pt_1 = class_tversky(y_true, y_pred)
gamma =1.3#4./3.0#1.3#4.0/3.00# 0.75
return K.sum(K.pow((1-pt_1), gamma))

def generalized_dice_coeff2(y_true, y_pred):
n_el = 1
for dim in y_true.shape:
n_el *= int(dim)
n_cl = y_true.shape[-1]
w = K.zeros(shape=(n_cl,))
w = (K.sum(y_true, axis=(0,1,2)))/(n_el)
w = 1/(w**2+0.000001)
numerator = y_true*y_pred
numerator = w*K.sum(numerator,(0,1,2))
numerator = K.sum(numerator)
denominator = y_true+y_pred
denominator = w*K.sum(denominator,(0,1,2))
denominator = K.sum(denominator)
return 2*numerator/denominator
def generalized_dice_coeff(y_true, y_pred):
axes = tuple(range(1, len(y_pred.shape)-1))
Ncl = y_pred.shape[-1]
w = K.zeros(shape=(Ncl,))
w = K.sum(y_true, axis=axes)
w = 1/(w**2+0.000001)
# Compute gen dice coef:
numerator = y_true*y_pred
numerator = w*K.sum(numerator,axes)
numerator = K.sum(numerator)

denominator = y_true+y_pred
denominator = w*K.sum(denominator,axes)
denominator = K.sum(denominator)

gen_dice_coef = 2*numerator/denominator

return gen_dice_coef

def generalized_dice_loss(y_true, y_pred):
return 1 - generalized_dice_coeff2(y_true, y_pred)
def soft_dice_loss(y_true, y_pred, epsilon=1e-6):
'''
Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.
Assumes the `channels_last` format.
# Arguments
y_true: b x X x Y( x Z...) x c One hot encoding of ground truth
y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax)
epsilon: Used for numerical stability to avoid divide by zero errors
# References
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
https://arxiv.org/abs/1606.04797
More details on Dice loss formulation
https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72)
Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022
'''

# skip the batch and class axis for calculating Dice score
axes = tuple(range(1, len(y_pred.shape)-1))

numerator = 2. * K.sum(y_pred * y_true, axes)

denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch

def seg_metrics(y_true, y_pred, metric_name, metric_type='standard', drop_last = True, mean_per_class=False, verbose=False):
"""
Compute mean metrics of two segmentation masks, via Keras.
IoU(A,B) = |A & B| / (| A U B|)
Dice(A,B) = 2*|A & B| / (|A| + |B|)
Args:
y_true: true masks, one-hot encoded.
y_pred: predicted masks, either softmax outputs, or one-hot encoded.
metric_name: metric to be computed, either 'iou' or 'dice'.
metric_type: one of 'standard' (default), 'soft', 'naive'.
In the standard version, y_pred is one-hot encoded and the mean
is taken only over classes that are present (in y_true or y_pred).
The 'soft' version of the metrics are computed without one-hot
encoding y_pred.
The 'naive' version return mean metrics where absent classes contribute
to the class mean as 1.0 (instead of being dropped from the mean).
drop_last = True: boolean flag to drop last class (usually reserved
for background class in semantic segmentation)
mean_per_class = False: return mean along batch axis for each class.
verbose = False: print intermediate results such as intersection, union
(as number of pixels).
Returns:
IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True
in which case it returns the per-class metric, averaged over the batch.
Inputs are B*W*H*N tensors, with
B = batch size,
W = width,
H = height,
N = number of classes
"""

flag_soft = (metric_type == 'soft')
flag_naive_mean = (metric_type == 'naive')

# always assume one or more classes
num_classes = K.shape(y_true)[-1]

if not flag_soft:
# get one-hot encoded masks from y_pred (true masks should already be one-hot)
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
y_true = K.one_hot(K.argmax(y_true), num_classes)

# if already one-hot, could have skipped above command
# keras uses float32 instead of float64, would give error down (but numpy arrays or keras.to_categorical gives float64)
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')

# intersection and union shapes are batch_size * n_classes (values = area in pixels)
axes = (1,2) # W,H axes of each image
intersection = K.sum(K.abs(y_true * y_pred), axis=axes)
mask_sum = K.sum(K.abs(y_true), axis=axes) + K.sum(K.abs(y_pred), axis=axes)
union = mask_sum - intersection # or, np.logical_or(y_pred, y_true) for one-hot

smooth = .001
iou = (intersection + smooth) / (union + smooth)
dice = 2 * (intersection + smooth)/(mask_sum + smooth)

metric = {'iou': iou, 'dice': dice}[metric_name]

# define mask to be 0 when no pixels are present in either y_true or y_pred, 1 otherwise
mask = K.cast(K.not_equal(union, 0), 'float32')

if drop_last:
metric = metric[:,:-1]
mask = mask[:,:-1]

if verbose:
print('intersection, union')
print(K.eval(intersection), K.eval(union))
print(K.eval(intersection/union))

# return mean metrics: remaining axes are (batch, classes)
if flag_naive_mean:
return K.mean(metric)

# take mean only over non-absent classes
class_count = K.sum(mask, axis=0)
non_zero = tf.greater(class_count, 0)
non_zero_sum = tf.boolean_mask(K.sum(metric * mask, axis=0), non_zero)
non_zero_count = tf.boolean_mask(class_count, non_zero)

if verbose:
print('Counts of inputs with class present, metrics for non-absent classes')
print(K.eval(class_count), K.eval(non_zero_sum / non_zero_count))

return K.mean(non_zero_sum / non_zero_count)

def mean_iou(y_true, y_pred, **kwargs):
"""
Compute mean Intersection over Union of two segmentation masks, via Keras.
Calls metrics_k(y_true, y_pred, metric_name='iou'), see there for allowed kwargs.
"""
return seg_metrics(y_true, y_pred, metric_name='iou', **kwargs)
def Mean_IOU(y_true, y_pred):
nb_classes = K.int_shape(y_pred)[-1]
iou = []
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
void_labels = K.equal(K.sum(y_true, axis=-1), 0)
for i in range(0, nb_classes): # exclude first label (background) and last label (void)
true_labels = K.equal(true_pixels, i)# & ~void_labels
pred_labels = K.equal(pred_pixels, i)# & ~void_labels
inter = tf.to_int32(true_labels & pred_labels)
union = tf.to_int32(true_labels | pred_labels)
legal_batches = K.sum(tf.to_int32(true_labels), axis=1)>0
ious = K.sum(inter, axis=1)/K.sum(union, axis=1)
iou.append(K.mean(tf.gather(ious, indices=tf.where(legal_batches)))) # returns average IoU of the same objects
iou = tf.stack(iou)
legal_labels = ~tf.debugging.is_nan(iou)
iou = tf.gather(iou, indices=tf.where(legal_labels))
return K.mean(iou)

def iou_vahid(y_true, y_pred):
nb_classes = tf.shape(y_true)[-1]+tf.to_int32(1)
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
iou = []

for i in tf.range(nb_classes):
tp=K.sum( tf.to_int32( K.equal(true_pixels, i) & K.equal(pred_pixels, i) ) )
fp=K.sum( tf.to_int32( K.not_equal(true_pixels, i) & K.equal(pred_pixels, i) ) )
fn=K.sum( tf.to_int32( K.equal(true_pixels, i) & K.not_equal(pred_pixels, i) ) )
iouh=tp/(tp+fp+fn)
iou.append(iouh)
return K.mean(iou)


def IoU_metric(Yi,y_predi):
## mean Intersection over Union
## Mean IoU = TP/(FN + TP + FP)
y_predi = np.argmax(y_predi, axis=3)
y_testi = np.argmax(Yi, axis=3)
IoUs = []
Nclass = int(np.max(Yi)) + 1
for c in range(Nclass):
TP = np.sum( (Yi == c)&(y_predi==c) )
FP = np.sum( (Yi != c)&(y_predi==c) )
FN = np.sum( (Yi == c)&(y_predi != c))
IoU = TP/float(TP + FP + FN)
IoUs.append(IoU)
return K.cast( np.mean(IoUs) ,dtype='float32' )


def IoU_metric_keras(y_true, y_pred):
## mean Intersection over Union
## Mean IoU = TP/(FN + TP + FP)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

return IoU_metric(y_true.eval(session=sess), y_pred.eval(session=sess))

def jaccard_distance_loss(y_true, y_pred, smooth=100):
"""
Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|)
= sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|))
The jaccard distance loss is usefull for unbalanced datasets. This has been
shifted so it converges on 0 and is smoothed to avoid exploding or disapearing
gradient.
Ref: https://en.wikipedia.org/wiki/Jaccard_index
@url: https://gist.github.com/wassname/f1452b748efcbeb4cb9b1d059dce6f96
@author: wassname
"""
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return (1 - jac) * smooth


Loading

0 comments on commit 4897fd3

Please sign in to comment.