-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
157 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import random | ||
import os | ||
from tqdm import tqdm | ||
import matplotlib.pyplot as plt | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.model_selection import StratifiedKFold | ||
from collections import Counter, defaultdict | ||
|
||
|
||
def plot_hists(df, title): | ||
print(df.shape) | ||
fig = plt.figure() | ||
fig.suptitle(title) | ||
ax = fig.add_subplot(2,2,1) | ||
ax.set_title('Died') | ||
df['Died'].hist() | ||
ax = fig.add_subplot(2,2,2) | ||
ax.set_title('Age') | ||
df['Age'].hist(bins=10) | ||
ax = fig.add_subplot(2,2,3) | ||
ax.set_title('Gender') | ||
df['Gender'].hist() | ||
#ax = fig.add_subplot(2,2,4) | ||
#ax.set_title('Examination') | ||
#df['Examination_Title'].hist() | ||
df.Gender = df.Gender.replace('Male',1) | ||
df.Gender = df.Gender.replace('Female',0) | ||
print('Age', df['Age'].mean(), df['Age'].std()) | ||
print('Gender', df['Gender'].mean(), df['Gender'].std(), df[df.Gender==1].shape[0]/df[df.Gender==0].shape[0]) | ||
print('Died', df['Died'].mean(), df['Died'].std(), df[df.Died==1].shape[0]/df[df.Died==0].shape[0]) | ||
|
||
def stratified_group_k_fold(X, y, groups, k, seed=None): | ||
""" https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation """ | ||
labels_num = np.max(y) + 1 | ||
y_counts_per_group = defaultdict(lambda: np.zeros(labels_num)) | ||
y_distr = Counter() | ||
for label, g in zip(y, groups): | ||
y_counts_per_group[g][label] += 1 | ||
y_distr[label] += 1 | ||
|
||
y_counts_per_fold = defaultdict(lambda: np.zeros(labels_num)) | ||
groups_per_fold = defaultdict(set) | ||
|
||
def eval_y_counts_per_fold(y_counts, fold): | ||
y_counts_per_fold[fold] += y_counts | ||
std_per_label = [] | ||
for label in range(labels_num): | ||
label_std = np.std([y_counts_per_fold[i][label] / y_distr[label] for i in range(k)]) | ||
std_per_label.append(label_std) | ||
y_counts_per_fold[fold] -= y_counts | ||
return np.mean(std_per_label) | ||
|
||
groups_and_y_counts = list(y_counts_per_group.items()) | ||
random.Random(seed).shuffle(groups_and_y_counts) | ||
|
||
for g, y_counts in tqdm(sorted(groups_and_y_counts, key=lambda x: -np.std(x[1])), total=len(groups_and_y_counts)): | ||
best_fold = None | ||
min_eval = None | ||
for i in range(k): | ||
fold_eval = eval_y_counts_per_fold(y_counts, i) | ||
if min_eval is None or fold_eval < min_eval: | ||
min_eval = fold_eval | ||
best_fold = i | ||
y_counts_per_fold[best_fold] += y_counts | ||
groups_per_fold[best_fold].add(g) | ||
|
||
all_groups = set(groups) | ||
for i in range(k): | ||
train_groups = all_groups - groups_per_fold[i] | ||
test_groups = groups_per_fold[i] | ||
|
||
train_indices = [i for i, g in enumerate(groups) if g in train_groups] | ||
test_indices = [i for i, g in enumerate(groups) if g in test_groups] | ||
|
||
yield train_indices, test_indices | ||
|
||
|
||
|
||
#file = 'cxr_news2_pseudonymised_filenames_jpgs_edit' | ||
file = 'cxr_news2_pseudonymised_filenames_latest' | ||
df = pd.read_csv(file + '.csv') | ||
|
||
train_df, val_df = train_test_split(df, stratify=df.Died, test_size=0.10) | ||
train_df.reset_index(drop=True, inplace=True) | ||
val_df.reset_index(drop=True, inplace=True) | ||
|
||
plot_hists(train_df, 'Train') | ||
plot_hists(val_df, 'Valid') | ||
plt.show() | ||
|
||
#train_df.to_csv('train.csv', index=False) | ||
#val_df.to_csv('valid.csv', index=False) | ||
|
||
|
||
|
||
|
||
df_folds = df | ||
patient_id_2_count = df_folds[['patient_pseudo_id', 'Filename']].groupby('patient_pseudo_id').count()['Filename'].to_dict() | ||
df_folds = df_folds.set_index('Filename', drop=False) | ||
print(patient_id_2_count) | ||
|
||
|
||
def get_stratify_group(row): | ||
#print(row['Age']) | ||
stratify_group = row['Gender'] | ||
#stratify_group += f'_{row["Age"]}' | ||
stratify_group += f'_{row["Died"]}' | ||
patient_id_count = patient_id_2_count[row["patient_pseudo_id"]] | ||
#print(row['Age'], row['Gender'], row['Died'], patient_id_count) | ||
''' | ||
if patient_id_count > 80: | ||
stratify_group += f'_80' | ||
elif patient_id_count > 60: | ||
stratify_group += f'_60' | ||
elif patient_id_count > 50: | ||
stratify_group += f'_50' | ||
elif patient_id_count > 30: | ||
stratify_group += f'_30' | ||
elif patient_id_count > 20: | ||
stratify_group += f'_20' | ||
elif patient_id_count > 10: | ||
stratify_group += f'_10' | ||
else: | ||
stratify_group += f'_0' | ||
''' | ||
#print(stratify_group) | ||
return stratify_group | ||
|
||
|
||
df_folds['stratify_group'] = df_folds.apply(get_stratify_group, axis=1) | ||
df_folds['stratify_group'] = df_folds['stratify_group'].astype('category').cat.codes | ||
|
||
df_folds.loc[:, 'fold'] = 0 | ||
|
||
skf = stratified_group_k_fold(X=df_folds.index, y=df_folds['stratify_group'], groups=df_folds['patient_pseudo_id'], k=5, seed=42) | ||
|
||
for fold_number, (train_index, val_index) in enumerate(skf): | ||
df_folds.loc[df_folds.iloc[val_index].index, 'fold'] = fold_number | ||
|
||
print(set(df_folds[df_folds['fold']==0]['patient_pseudo_id'].values).intersection(df_folds[df_folds['fold']==1]['patient_pseudo_id'].values)) | ||
print(set(df_folds[df_folds['fold']==0]['patient_pseudo_id'].values).intersection(df_folds[df_folds['fold']==2]['patient_pseudo_id'].values)) | ||
print(set(df_folds[df_folds['fold']==0]['patient_pseudo_id'].values).intersection(df_folds[df_folds['fold']==3]['patient_pseudo_id'].values)) | ||
print(set(df_folds[df_folds['fold']==0]['patient_pseudo_id'].values).intersection(df_folds[df_folds['fold']==4]['patient_pseudo_id'].values)) | ||
|
||
df_folds.to_csv(file + '_folds.csv', index=False) | ||
print(df_folds.head()) | ||
print('Final', df_folds.shape) | ||
|
||
plot_hists(df_folds[df_folds['fold']==0], 'Fold 0') | ||
plot_hists(df_folds[df_folds['fold']==1], 'Fold 1') | ||
plot_hists(df_folds[df_folds['fold']==2], 'Fold 2') | ||
plot_hists(df_folds[df_folds['fold']==3], 'Fold 3') | ||
plot_hists(df_folds[df_folds['fold']==4], 'Fold 4') | ||
plt.show() | ||
|