-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Plotting code for confusion matrices (+ AUCs)
- Loading branch information
Showing
1 changed file
with
120 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import numpy as np | ||
import pandas as pd | ||
from sklearn.metrics import confusion_matrix | ||
from sklearn.metrics import roc_curve, precision_recall_curve, auc | ||
import seaborn as sn | ||
import os | ||
import matplotlib.pyplot as plt | ||
import matplotlib | ||
matplotlib.use('TkAgg') | ||
|
||
outputs_saved = True | ||
plot_AUCs = False | ||
|
||
num_classes = 4 | ||
if outputs_saved: | ||
for subdir, dirs, files in os.walk('/data/COVID/models'): | ||
for somedir in dirs: | ||
# Outputs saved from training (potentially from all folds) | ||
fulldir = os.path.join('/data/COVID/models', somedir) | ||
experiments_output_file = os.path.join(fulldir, 'preds.csv') # '/data/COVID/models/death-time-b3-folds-tta/preds-efficientnet-b3-bs32-512.csv' | ||
experiments_output = pd.read_csv(experiments_output_file) | ||
|
||
# Separate network outputs from labels | ||
filenames = experiments_output.Filename | ||
df_labels = experiments_output.Died | ||
df_preds = experiments_output.Pred | ||
|
||
# Confusion matrix calcs | ||
# Convert OHE Labels, outputs | ||
standard_labels = [] | ||
standard_preds = [] | ||
|
||
for i in range(len(df_labels)): | ||
standard_labels.append(np.argmax(eval(str(df_labels[i])))) | ||
standard_preds.append(np.argmax(eval(str(df_preds[i])))) | ||
|
||
# AUC calcs | ||
# Convert OHE Labels, outputs | ||
labels = [] | ||
preds = [] | ||
|
||
for i in range(len(df_labels)): | ||
labels.append(eval(str(df_labels[i]))) | ||
preds.append(eval(str(df_preds[i]))) | ||
|
||
labels = np.array(labels) | ||
preds = np.array(preds) | ||
|
||
# Calculate confusion matrix | ||
class_names = ['48H', '1 week -', '1 week +', 'Survived', 'micro'] | ||
conf_mat = confusion_matrix(standard_labels, standard_preds) | ||
|
||
df_cm = pd.DataFrame(conf_mat, index=[i+'_lab' for i in class_names[:-1]], | ||
columns=[i for i in class_names[:-1]]) | ||
plt.figure(figsize=(10, 7)) | ||
plt.title(f'Confusion matrix for experiment: {somedir}') | ||
sn.heatmap(df_cm, annot=True) | ||
|
||
# Also plot AUCs | ||
if plot_AUCs: | ||
# Compute ROC curve and ROC area for each class | ||
fpr = dict() | ||
tpr = dict() | ||
roc_auc = dict() | ||
for classID in range(num_classes): | ||
fpr[classID], tpr[classID], _ = roc_curve(labels[:, classID], preds[:, classID]) | ||
roc_auc[classID] = auc(fpr[classID], tpr[classID]) | ||
|
||
# Compute micro-average ROC curve and ROC area | ||
fpr["micro"], tpr["micro"], _ = roc_curve(labels.ravel(), preds.ravel()) | ||
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) | ||
|
||
# Compute PR curve and PR area for each class | ||
precision_tot = dict() | ||
recall_tot = dict() | ||
pr_auc = dict() | ||
for classID in range(num_classes): | ||
precision_tot[classID], recall_tot[classID], _ = precision_recall_curve(labels[:, classID], | ||
preds[:, classID]) | ||
pr_auc[classID] = auc(recall_tot[classID], precision_tot[classID]) | ||
|
||
# Compute micro-average precision-recall curve and PR area | ||
precision_tot["micro"], recall_tot["micro"], _ = precision_recall_curve(labels.ravel(), preds.ravel()) | ||
pr_auc["micro"] = auc(recall_tot["micro"], precision_tot["micro"]) | ||
no_skill = len(labels[labels == 1]) / len(labels) | ||
|
||
colors = ['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'red'] | ||
# Plot ROC-AUC for different classes: | ||
plt.figure() | ||
plt.axis('square') | ||
for classID, key in enumerate(fpr.keys()): | ||
lw = 2 | ||
plt.plot(fpr[key], tpr[key], color=colors[classID], # 'darkorange', | ||
lw=lw, label=f'{class_names[classID]} ROC curve (area = {roc_auc[key]: .2f})') | ||
plt.title(f'Class ROC-AUC for ALL classes: {somedir}', fontsize=18) | ||
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') | ||
plt.xlim([0.0, 1.0]) | ||
plt.ylim([0.0, 1.05]) | ||
plt.xlabel('False Positive Rate', fontsize=16) | ||
plt.ylabel('True Positive Rate', fontsize=16) | ||
plt.legend(loc="lower right") | ||
|
||
plt.figure() | ||
plt.axis('square') | ||
for classID, key in enumerate(precision_tot.keys()): | ||
lw = 2 | ||
plt.plot(recall_tot[key], precision_tot[key], color=colors[classID], # color='darkblue', | ||
lw=lw, label=f'{class_names[classID]} PR curve (area = {pr_auc[key]: .2f})') | ||
plt.title(f'Class PR-AUC for ALL classes: {somedir}', fontsize=18) | ||
# plt.plot([0, 1], [0, 0], lw=lw, linestyle='--', label='No Skill') | ||
plt.xlim([0.0, 1.0]) | ||
plt.ylim([0.0, 1.05]) | ||
plt.xlabel('Recall', fontsize=16) | ||
plt.ylabel('Precision', fontsize=16) | ||
plt.legend(loc="lower right") | ||
|
||
else: | ||
# Need to load model and get outputs | ||
print('Not supported right now') | ||
plt.show() |