forked from quantum-ethics/quantum-ethics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter-dirac-and-pauli-matrices.tex
41 lines (37 loc) · 1.31 KB
/
chapter-dirac-and-pauli-matrices.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
\chapter{Dirac and Pauli matrices}
\section{Pauli matrices}
In this document, the Pauli matrices, which act canonically as endomorphisms of $\H^2$, are represented by:
$$
\begin{array}{ccc}
\sigmat 1 \eqdef \matrix{0 & 1 \\ 1 & 0} &
\sigmat 2 \eqdef \matrix{0 & -i \\ i & 0} &
\sigmat 3 \eqdef \matrix{1 & 0 \\ 0 & -1}
\end{array}
$$
These matrices verify the anticommutation relations:
\begin{equation*}
\left\{ \sigmat a, \sigmat b \right\} \eqdef \sigmat a \sigmat b + \sigmat b \sigmat a = 2 \delta_{a,b} I_2
\end{equation*}
\section{Dirac matrices}
\label{Dirac matrices}
In this document, the Dirac matrices, which act canonically as endomorphisms of $\H^4$, are represented by:
$$
\begin{array}{cc}
\gammat 0 \eqdef \matrix{I_2 & 0 \\ 0 & -I_2} &
\gammat 1 \eqdef \matrix{0 & \sigmat 1 \\ -\sigmat 1 & 0}
\end{array}
$$
$$
\begin{array}{cc}
\gammat 2 \eqdef \matrix{0 & \sigmat 2 \\ -\sigmat 2 & 0} &
\gammat 3 \eqdef \matrix{0 & \sigmat 3 \\ -\sigmat 3 & 0}
\end{array}
$$
These matrices verify the anticommutation relations:
\begin{equation*}
\left\{ \gammat \mu, \gammat \nu \right\} \eqdef \gammat \mu \gammat \nu + \gammat \nu \gammat \mu = 2 \stthh g \mu \nu I_4
\end{equation*}
We will make use of the condensed vectorial notation:
\begin{equation*}
\gamvec \eqdef \matrix{ \gammat 1 \\ \gammat 2 \\ \gammat 3 }
\end{equation*}