Skip to content

shwang1114/NAUS

 
 

Repository files navigation

NAUS

This repo contains the code to replicate experiments in Learning Non-Autoregressive Models from Search for Unsupervised Sentence Summarization.

Additional Results: Supervised Summarization

Table1. Model performance on the Gigaword headline generation test dataset under the supervised setting
    Models Parameters Row # Rouge-1 Rouge-2 Rouge-L Avg Rouge Len
 NAG-BERT        0.2     1   29.05   12.69   27.52     23.09 6.2
       0.3     2   30.05   13.80   28.87     24.24 6.6
       0.4     3   30.47   13.58   28.81     24.29 6.7
       0.5     4   30.41   13.53   28.63     24.19 6.7
       0.6     5   30.61   13.55   28.97     24.38 6.8
       0.7     6   30.30   13.59   28.67     24.19 6.8
       0.8     7   30.21   13.05   28.59     23.95 6.8
       0.9     8   30.57   13.64   28.99     24.40 6.8
 NAUS+LC       0.23     9   33.73   13.26   31.68     26.22 6.4
      0.24    10   34.56   14.10   32.45     27.04 6.8

Table 1 shows the performance of NAG-BERT (Su et.al., 2021) and the length-control variant of our NAUS model on the Gigaword test set under the supervised setting, where the parameter refers to the length penalty term for NAG-BERT but the length ratio between each generated summary and its source text for our NAUS model. As seen in the table, our model achieves much better performance (i.e., a couple points higher for all Rouge metrics) than NAG-BERT within the same length budget (row 5-8 & 10).

Note, our Rouge scores for NAG-BERT are lower than the scores reported in Su et.al. (2021), this is because they polished the test dataset (e.g., removing some special tokens) before evaluation while our evaluation was directly performed on the original test set.

Prepare

Python Version and Requirements

The script is developed based on fairseq and is tested with Python version 3.8.

Our original implementation is done with Anaconda, and we include the commands to set up its environment in conda_commands.txt

We also offer a python virtual environment approach to set up the environment, but some packages (e.g., CUDA) need to be manually configured. Use the following command to install the required packages in a python virtual environment:

pip install -r requirements.txt

After setting up the environment, our script can be installed by

pip install -e .

Download Data

Download training Gigaword for headline generation data.

Obtain Search Result

In our approach, the model is trained from the pseudo-summaries generated by search. After getting the search output (assuming you want to train NAUS with pseudo-summaries of length 10), create a folder gigaword_10 and place the train, validation and test data into this folder. Specifically, you should name your train/valid/test input and output as train/valid/test.article and train/valid/test.summary respectively.

Preprocess the data

Assume your folder is gigaword_10, use the following command to preprocess the data

TEXT=gigaword_10
python3 fairseq_cli/preprocess.py --source-lang article --target-lang summary --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test --destdir data-bin/$TEXT --workers 40 --joined-dictionary

Model Training

We first give a demonstration on training NAUS on 10 words summaries, and set the desired summary length to be 10. To do this, we declare some variables in the terminal:

data_source=data-bin/gigaword_10
arch=nat_encoder_only_customized_ctc
length_control=beam_search_length_control
desired_length=10
beam_size=6
k=20
plain_ctc=False
valid_subset=test,valid
drop_out=0.1
max_token=4096
max_update=200000
use_bert_tokens=False

Then run the training script:

CUDA_VISIBLE_DEVICES=0 python train.py $data_source --source-lang article --target-lang summary --save-dir giga_${arch}_${length_control}_${desired_length}_plain_ctc_${plain_ctc}_use_bert_tokens_${use_bert_tokens}_beam_size_${beam_size}_k_${k}_dropout_${drop_out}_checkpoints --eval-tokenized-rouge True --keep-interval-updates 5 --save-interval-updates 5000 --validate-interval-updates 5000 --maximize-best-checkpoint-metric --eval-rouge-remove-bpe True --eval-rouge-print-samples True --best-checkpoint-metric loss --log-format simple --log-interval 100 --eval-rouge True --keep-last-epochs 5 --keep-best-checkpoints 5 --fixed-validation-seed 7 --ddp-backend=no_c10d --share-all-embeddings --decoder-learned-pos --encoder-learned-pos --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 --fp16 --clip-norm 2.0 --max-update $max_update --task translation_lev --criterion nat_loss --arch $arch --noise full_mask --src-upsample-scale 1 --use-ctc-decoder --ctc-beam-size 1 --label-smoothing 0.1 --activation-fn gelu --dropout $drop_out --max-tokens $max_token --eval-bleu-remove-bpe --valid-subset $valid_subset --plain_ctc $plain_ctc --length_control $length_control --desired_length $desired_length --k $k --use_bert_tokens $use_bert_tokens --beam_size $beam_size --use_length_ratio False --force_length False

To explain:

length_control refers to the method to control the output length, it can be chosen from "no_control", "truncate" and "beam_search_length_control";

desired_length refers to the desired length of the output summary. It will be ignored if length control is set to no_control.

beam_size refers to the beam search of the beam search component in the length control;

k is the number of tokens we consider at each time slot during the beam search;

plain_ctc determines whether to use plain CTC decoding;

valid_subset is the subset of the validation and test dataset, "valid" is always required to perform validation;

max_token controls the max token in each batch;

use_bert_tokens is not useful for our model, always set to False.

To run the training script and perform inference with our length-control algorithm with a specified length (length-transfer), set the force_length to be true:

CUDA_VISIBLE_DEVICES=0 python train.py $data_source --source-lang article --target-lang summary --save-dir giga_${arch}_${length_control}_${desired_length}_plain_ctc_${plain_ctc}_use_bert_tokens_${use_bert_tokens}_beam_size_${beam_size}_k_${k}_dropout_${drop_out}_checkpoints --eval-tokenized-rouge True --keep-interval-updates 5 --save-interval-updates 5000 --validate-interval-updates 5000 --maximize-best-checkpoint-metric --eval-rouge-remove-bpe True --eval-rouge-print-samples True --best-checkpoint-metric loss --log-format simple --log-interval 100 --eval-rouge True --keep-last-epochs 5 --keep-best-checkpoints 5 --fixed-validation-seed 7 --ddp-backend=no_c10d --share-all-embeddings --decoder-learned-pos --encoder-learned-pos --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 --fp16 --clip-norm 2.0 --max-update $max_update --task translation_lev --criterion nat_loss --arch $arch --noise full_mask --src-upsample-scale 1 --use-ctc-decoder --ctc-beam-size 1 --label-smoothing 0.1 --activation-fn gelu --dropout $drop_out --max-tokens $max_token --eval-bleu-remove-bpe --valid-subset $valid_subset --plain_ctc $plain_ctc --length_control $length_control --desired_length $desired_length --k $k --use_bert_tokens $use_bert_tokens --beam_size $beam_size --use_length_ratio False --force_length True

To run the training script and perform inference with our length-control algorithm with a specified length ratio (length-transfer), set the use_length_ratio to be true:

CUDA_VISIBLE_DEVICES=0 python train.py $data_source --source-lang article --target-lang summary --save-dir giga_${arch}_${length_control}_${desired_length}_plain_ctc_${plain_ctc}_use_bert_tokens_${use_bert_tokens}_beam_size_${beam_size}_k_${k}_dropout_${drop_out}_checkpoints --eval-tokenized-rouge True --keep-interval-updates 5 --save-interval-updates 5000 --validate-interval-updates 5000 --maximize-best-checkpoint-metric --eval-rouge-remove-bpe True --eval-rouge-print-samples True --best-checkpoint-metric loss --log-format simple --log-interval 100 --eval-rouge True --keep-last-epochs 5 --keep-best-checkpoints 5 --fixed-validation-seed 7 --ddp-backend=no_c10d --share-all-embeddings --decoder-learned-pos --encoder-learned-pos --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 --fp16 --clip-norm 2.0 --max-update $max_update --task translation_lev --criterion nat_loss --arch $arch --noise full_mask --src-upsample-scale 1 --use-ctc-decoder --ctc-beam-size 1 --label-smoothing 0.1 --activation-fn gelu --dropout $drop_out --max-tokens $max_token --eval-bleu-remove-bpe --valid-subset $valid_subset --plain_ctc $plain_ctc --length_control $length_control --desired_length $desired_length --k $k --use_bert_tokens $use_bert_tokens --beam_size $beam_size --use_length_ratio True --force_length True

Notice, desired length, in this case, becomes the desired length ratio. For example, setting the desired length to be 50 will force NAUS to generate a summary whose length is 50% of that of its input.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.0%
  • Other 2.0%