Skip to content

CrossASR | IEEE ICSME 2020 | Efficient Differential Testing of Automatic Speech Recognition via Text-To-Speech

Notifications You must be signed in to change notification settings

soarsmu/CrossASR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CrossASR

Code for ICSME 2020 "CrossASR: Efficient Differential Testing of Automatic Speech Recognition via Text-To-Speech" by Muhammad Hilmi Asyrofi, Ferdian Thung, David Lo, and Lingxiao Jiang

Paper PDF | DOI

Overview

Automatic speech recognition (ASR) systems are ubiquitous parts of modern life. It can be found in our smartphones, desktops, and smart home systems. To ensure its correctness in recognizing speeches, ASR needs to be tested. Testing ASR requires test cases in the form of audio files and their transcribed texts. Building these test cases manually, however, is tedious and time-consuming.

To deal with the aforementioned challenge, in this work, we propose CrossASR, an approach that capitalizes the existing Text-To-Speech (TTS) systems to automatically generate test cases for ASR systems. CrossASR is a differential testing solution that compares outputs of multiple ASR systems to uncover erroneous behaviors among ASRs. CrossASR efficiently generates test cases to uncover failures with as few generated tests as possible; it does so by employing a failure probability predictor to pick the texts with the highest likelihood of leading to failed test cases. As a black-box approach, CrossASR can generate test cases for any ASR, including when the ASR model is not available (e.g., when evaluating the reliability of various third-party ASR services).

We evaluated the performance of CrossASR on 20,000 English texts (i.e., sentences) in the Europarl corpus. We use 4 TTSes (i.e., Google, ResponsiveVoice, Festival, and Espeak) and 4 ASRs (i.e., Deepspeech, Deepspeech2, wav2letter++, and wit). We use more than one TTS to avoid bias that comes from a particular TTS.

Prepare Virtual Environment

1. Install the Python development environment on your system

sudo apt update
sudo apt install python3-dev python3-pip python3-venv

2. Create a virtual environment

Create a new virtual environment by choosing a Python interpreter and making a ./env directory to hold it:

python3 -m venv --system-site-packages ~/./env

Activate the virtual environment using a shell-specific command:

source ~/./env/bin/activate  # sh, bash, or zsh

TTSes

1. Google

We use gTTS (Google Text-to-Speech), a Python library and CLI tool to interface with Google Translate text-to-speech API.

pip install gTTS

Trial

if [ ! -d "audio/" ]
then 
    mkdir audio
fi

mkdir audio/google/
gtts-cli 'hello world google' --output audio/google/hello.mp3
ffmpeg -i audio/google/hello.mp3  -acodec pcm_s16le -ac 1 -ar 16000 audio/google/hello.wav -y

2. ResponsiveVoice

We use rvTTS, a cli tool for converting text to mp3 files using ResponsiveVoice's API.

pip install rvtts

Trial

mkdir audio/rv/
rvtts --voice english_us_male --text "hello responsive voice trial" -o audio/rv/hello.mp3
ffmpeg -i audio/rv/hello.mp3  -acodec pcm_s16le -ac 1 -ar 16000 audio/rv/hello.wav -y

3. Festival

Festival is a free TTS written in C++. It is developed by The Centre for Speech Technology Research at the University of Edinburgh. Festival are distributed under an X11-type licence allowing unrestricted commercial and non-commercial use alike. Festival is a command-line program that already installed on Ubuntu 16.04

Trial

sudo apt install festival
mkdir audio/festival/
festival -b "(utt.save.wave (SayText \"hello festival \") \"audio/festival/hello.wav\" 'riff)"

4. Espeak

eSpeak is a compact open source software speech synthesizer for English and other languages.

sudo apt install espeak

mkdir audio/espeak/
espeak "hello e speak" --stdout > audio/espeak/hello.wav
ffmpeg -i audio/espeak/hello.wav  -acodec pcm_s16le -ac 1 -ar 16000 audio/espeak/hello.wav -y

ASRs

1. Deepspeech

DeepSpeech is an open source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Speech research paper. CrossASR uses Deepspeech-0.6.1

pip install deepspeech===0.6.1

if [ ! -d "models/" ]
then 
    mkdir models
fi

cd models
mkdir deepspeech
cd deepspeech 
curl -LO https://github.com/mozilla/DeepSpeech/releases/download/v0.6.1/deepspeech-0.6.1-models.tar.gz
tar xvf deepspeech-0.6.1-models.tar.gz
cd ../../

Please follow this link for more detailed installation.

Trial

deepspeech --model models/deepspeech/deepspeech-0.6.1-models/output_graph.pbmm --lm models/deepspeech/deepspeech-0.6.1-models/lm.binary --trie models/deepspeech/deepspeech-0.6.1-models/trie --audio audio/google/hello.wav

2. Deepspeech2

DeepSpeech2 is an open-source implementation of end-to-end Automatic Speech Recognition (ASR) engine, based on Baidu's Deep Speech 2 paper, with PaddlePaddle platform.

Setup a docker container for Deepspeech2

Original Source

cd models/
git clone https://github.com/PaddlePaddle/DeepSpeech.git
cp deepspeech2-api.py DeepSpeech/
cd DeepSpeech/models/librispeech/
sh download_model.sh
cd ../../../../
cd models/DeepSpeech/models/lm
sh download_lm_en.sh
cd ../../../../
docker pull paddlepaddle/paddle:1.6.2-gpu-cuda10.0-cudnn7

# please remove --gpus '"device=1"' if you only have one gpu
docker run --name deepspeech2 --rm --gpus '"device=1"' -it -v $(pwd)/models/DeepSpeech:/DeepSpeech -v $(pwd)/audio/:/DeepSpeech/audio/ -v $(pwd)/data/:/DeepSpeech/data/ paddlepaddle/paddle:1.6.2-gpu-cuda10.0-cudnn7 /bin/bash

apt-get update
apt-get install git -y
cd DeepSpeech
sh setup.sh
apt-get install libsndfile1-dev -y

in case you found error when running the setup.sh

Error solution for ImportError: No module named swig_decoders

pip install paddlepaddle-gpu==1.6.2.post107
cd DeepSpeech
pip install soundfile
pip install llvmlite===0.31.0
pip install resampy
pip install python_speech_features

wget http://prdownloads.sourceforge.net/swig/swig-3.0.12.tar.gz
tar xvzf swig-3.0.12.tar.gz
cd swig-3.0.12
apt-get install automake -y 
./autogen.sh
./configure
make
make install

cd ../decoders/swig/
sh setup.sh
cd ../../

Run Deepspeech2 as an API (inside docker container)

pip install flask 

CUDA_VISIBLE_DEVICES=0 python deepspeech2-api.py \
    --mean_std_path='models/librispeech/mean_std.npz' \
    --vocab_path='models/librispeech/vocab.txt' \
    --model_path='models/librispeech' \
    --lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm'

Then detach from the docker using ctrl+p & ctrl+q after you see Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Run Client from the Terminal (outside docker container)

docker exec -it deepspeech2 curl http://localhost:5000/transcribe?fpath=audio/google/hello.wav

3. Wav2letter++

wav2letter++ is a highly efficient end-to-end automatic speech recognition (ASR) toolkit written entirely in C++ by Facebook Research, leveraging ArrayFire and flashlight.

Please find the lastest image of wav2letter's docker.

cd models/
mkdir wav2letter
cd wav2letter

for f in acoustic_model.bin tds_streaming.arch decoder_options.json feature_extractor.bin language_model.bin lexicon.txt tokens.txt ; do wget http://dl.fbaipublicfiles.com/wav2letter/inference/examples/model/${f} ; done

ls -sh
cd ../../

Run docker inference API

docker run --name wav2letter -it --rm -v $(pwd)/audio/:/root/host/audio/ -v $(pwd)/models/:/root/host/models/ --ipc=host -a stdin -a stdout -a stderr wav2letter/wav2letter:inference-latest 

Then detach from the docker using ctrl+p & ctrl+q

Run Client from the Terminal

docker exec -it wav2letter sh -c "cat /root/host/audio/google/hello.wav | /root/wav2letter/build/inference/inference/examples/simple_streaming_asr_example --input_files_base_path /root/host/models/wav2letter/"

Detail of wav2letter++ installation and wav2letter++ inference

4. Wit

Wit gives an API interface for ASR. We use pywit, the Python SDK for Wit. You need to create an WIT account to get access token.

install pywit

pip install wit===5.1.0

Setup Wit access token

export WIT_ACCESS_TOKEN=<your Wit access token>

Check using HTTP API

curl -XPOST 'https://api.wit.ai/speech?' \
    -i -L \
    -H "Authorization: Bearer $WIT_ACCESS_TOKEN" \
    -H "Content-Type: audio/wav" \
    --data-binary "@audio/google/hello.wav"

Success Response

HTTP/1.1 100 Continue
Date: Fri, 11 Sep 2020 05:55:51 GMT

HTTP/1.1 200 OK
Content-Type: application/json
Date: Fri, 11 Sep 2020 05:55:52 GMT
Connection: keep-alive
Content-Length: 85

{
  "entities": {},
  "intents": [],
  "text": "hello world google",
  "traits": {}
}

Trial

python models/wit_trial.py

Python Interface for TTSes and ASRs

Requirements

pip install numpy
pip install pandas
pip install scikit-learn
pip install normalise

normalise has several nltk data dependencies. Install these by running the following python commands (inside python):

import nltk
for dependency in ("brown", "names", "wordnet", "averaged_perceptron_tagger", "universal_tagset"):
    nltk.download(dependency)

TTS

python trial.py -t <tts> -o audio/<tts>/icsme.wav

Example on Google

python trial.py -t google -o audio/google/icsme.wav

ASR

python trial.py -a <asr> -i audio/<asr>/icsme.wav

Example on Deepspeech2

python trial.py -a paddledeepspeech -i audio/google/icsme.wav

Prepare Europarl Data

We already provided corpus/europarl-20k.txt on our Github repository. Thus you can skip this step actually. Please check in the folder corpus/ to make sure the dataset availability.

If you wanna reproduce how to generate dataset, please follow the next steps

1. Download Raw Data from Kaggle

Download Eurparl Raw Data. Then extract it inside the main folder. You will get europarl-parallel-corpus-19962011/

2. Generate Corpus

python generate_experiment_data.py

This code will generate full europarl corpus corpus/europarl-full.csv and 20k texts corpus/europarl-20k.txt for our experiment.

Run Without Classifier (RQ1 and RQ2)

sh run_without_classifier.sh

This script will generate audio files in the form of audio/without_classifier/<tts>/audio-<id>.wav. The transcription is saved at result/without_classifier/<dataset name>/<tts>/<asr>/data.csv. The statistic (number of failed test case, succuss test case, and indeterminable test case) is saved at result/without_classifier/<dataset name>/<tts>/<asr>/data.csv.

Run With Classifier (RQ2)

Setup Classifier

pip install torch
pip install simpletransformers

Trial

python try_classifier.py

Run

sh run_with_classifier.sh

This script will generate audio files in the form of audio/with_classifier/<tts>/audio-<id>.wav. The transcription is saved at result/with_classifier/<dataset name>/<tts>/<asr>/data.csv. The statistic (number of failed test case, succuss test case, and indeterminable test case) is saved at result/with_classifier/<dataset name>/<tts>/<asr>/data.csv.

Process 20k Texts (RQ3)

Generate Audio File

Template

python generate_audio.py --tts <tts name> --output-dir <output dir location> --lower-bound <lower bound id> --upper-bound <upper bound id>

Example

python generate_audio.py --tts google --output-dir audio/data/ --lower-bound 0 --upper-bound 20000

Recognize Audio File

Template

python recognize_audio.py --tts <tts name> --asr <asr name> --input-dir <input audio dir location> --output-dir <output transcription dir location> --lower-bound <lower bound id> --upper-bound <upper bound id>

Example

python recognize_audio.py --tts google --asr paddledeepspeech --input-dir audio/data/ --output-dir transcription/ --lower-bound 0 --upper-bound 20000

Please Cite This!

@INPROCEEDINGS{Asyrofi2020CrossASR,  
    author={M. H. {Asyrofi} and F. {Thung} and D. {Lo} and L. {Jiang}},  
    booktitle={2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)},
    title={CrossASR: Efficient Differential Testing of Automatic Speech Recognition via Text-To-Speech},   
    year={2020},  volume={},  number={},  
    pages={640-650},  
    doi={10.1109/ICSME46990.2020.00066}}

About

CrossASR | IEEE ICSME 2020 | Efficient Differential Testing of Automatic Speech Recognition via Text-To-Speech

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published