-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added data generation and particle detection code
- Loading branch information
1 parent
56b466c
commit 466c12c
Showing
5 changed files
with
705 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
import numpy as np | ||
from numpy import pi | ||
import tensorflow as tf | ||
|
||
class Particle_Tracking_Training_Data(tf.Module): | ||
def __init__(self, Nt, rings=True): | ||
self.Nt = int(Nt) | ||
self.Ny = self.Nx = 256 | ||
self.d = 3 | ||
ximg = [[[i, j] for i in np.arange(self.Ny)] | ||
for j in np.arange(self.Nx)] | ||
self.ximg = np.float32(ximg) | ||
|
||
x = np.arange(self.Nx) - self.Nx//2 | ||
y = np.arange(self.Ny) - self.Ny//2 | ||
X0, Y0 = np.meshgrid(x, y) | ||
self.X = np.float32(X0) | ||
self.Y = np.float32(Y0) | ||
|
||
if rings: | ||
self.ring_indicator = 1. | ||
else: | ||
self.ring_indicator = 0. | ||
|
||
self._gen_video = tf.function( | ||
input_signature=( | ||
tf.TensorSpec( | ||
shape=[self.Ny, self.Nx, self.Nt, None], dtype=tf.float32), | ||
tf.TensorSpec(shape=[self.Nt, None], dtype=tf.float32), | ||
tf.TensorSpec(shape=[], dtype=tf.float32), | ||
tf.TensorSpec(shape=[], dtype=tf.float32), | ||
tf.TensorSpec(shape=[], dtype=tf.float32),) | ||
)(self._gen_video) | ||
|
||
self._gen_labels = tf.function( | ||
input_signature=( | ||
tf.TensorSpec( | ||
shape=[self.Ny, self.Nx, self.Nt, None], dtype=tf.float32),) | ||
)(self._gen_labels) | ||
|
||
def __call__(self, kappa, a, IbackLevel, Nparticles, sigma_motion): | ||
"""a: spot radius scale factor (1.5-4 is a reasonable range) | ||
kappa: noise level (around 0.1 or so) | ||
IbackLevel: intensity level of the random background relative to maximum (must be between zero and one) | ||
Nparticles: the number of particles in the video (larger numbers means slower run time) | ||
sigma_motion: the standard deviation of the random Brownian motion per video frame""" | ||
## random brownian motion paths | ||
## Nt, Nparticles, 3 | ||
xi = self._sample_motion(Nparticles, sigma_motion) | ||
|
||
#### translate track positions to img coords | ||
## Ny, Nx, Nt, Np, 2 | ||
XALL = (self.ximg[:, :, None, None, :] | ||
- xi[None, None, :, :, :2]) | ||
## Ny, Nx, Nt, Np | ||
r = tf.math.sqrt(XALL[..., 0]**2 + XALL[..., 1]**2) | ||
z = xi[..., 2] | ||
|
||
### generate video | ||
I = self._gen_video(r, z, kappa, a, IbackLevel) | ||
|
||
### generate labels | ||
labels = self._gen_labels(r) | ||
|
||
return I, labels, xi | ||
|
||
@staticmethod | ||
def rand(n): | ||
return tf.random.uniform([n], dtype=tf.float32) | ||
|
||
@tf.function( | ||
input_signature=( | ||
tf.TensorSpec(shape=[], dtype=tf.int32), | ||
tf.TensorSpec(shape=[], dtype=tf.float32),)) | ||
def _sample_motion(self, Nparticles, sigma_motion): | ||
#### boundaries | ||
b_lower = tf.constant( | ||
[-10, -10, -30.], tf.float32) | ||
b_upper = tf.constant( | ||
[self.Nx+10, self.Ny+10, 30.], tf.float32) | ||
#### uniform random initial possitions | ||
U = tf.random.uniform( | ||
[1, Nparticles, self.d], | ||
dtype=tf.float32) | ||
X0 = b_lower + (b_upper - b_lower)*U | ||
#### normal increments | ||
dX = tf.random.normal( | ||
[self.Nt, Nparticles, self.d], | ||
stddev=sigma_motion, | ||
dtype=tf.float32) | ||
#### unbounded Brownian motion | ||
X = X0 + tf.math.cumsum(dX, axis=0) | ||
#### reflected brownian motion | ||
## note that this is imperfect, | ||
## if increments are very large it wont work | ||
X = tf.math.abs(X - b_lower) + b_lower | ||
X = -tf.math.abs(b_upper - X) + b_upper | ||
return X | ||
|
||
def _gen_video(self, r, z, kappa, a, IbackLevel): | ||
uw = (0.5 + self.rand(1))/2. | ||
un = tf.floor(3*self.rand(1)) | ||
uampRing = 0.2 + 0.8*self.rand(1) | ||
ufade = 15 + 10*self.rand(1) | ||
rmax = ufade*(un/uw)**(2./3.) | ||
ufadeMax = 0.85 | ||
fade = (1. - ufadeMax*tf.abs(tf.tanh(z/ufade))) | ||
core = tf.exp(-(r**2/(8.*a))**2) | ||
ring = fade*(tf.exp(-(r - z)**4/(a)**4) | ||
+ 0.5*uampRing*tf.cast(r<z, tf.float32)) | ||
I = tf.transpose( | ||
tf.reduce_sum( | ||
fade*(core + self.ring_indicator*ring), | ||
axis=3), | ||
[2, 0, 1]) # Nt, Ny, Nx | ||
I += IbackLevel*tf.sin( | ||
self.rand(1)*6*pi/512*tf.sqrt( | ||
self.rand(1)*(self.X - self.rand(1)*512)**2 | ||
+ self.rand(1)*(self.Y - self.rand(1)*512)**2)) | ||
I += tf.random.normal( | ||
[self.Nt, self.Ny, self.Nx], | ||
stddev=kappa, | ||
dtype=tf.float32) | ||
Imin = tf.reduce_min(I) | ||
Imax = tf.reduce_max(I) | ||
I = (I - Imin)/(Imax - Imin) | ||
I = tf.round(I*tf.maximum(256., tf.round(2**16*self.rand(1)))) | ||
return I | ||
|
||
def _gen_labels(self, r): | ||
R_detect = 3. | ||
## (Ny, Nx, Nt) | ||
detectors = tf.reduce_sum( | ||
tf.cast(r[::2, ::2, :, :] < R_detect, tf.int32), | ||
axis=3) | ||
## (Nt, Ny, Nx) | ||
P = tf.transpose( | ||
tf.cast(detectors > 0, tf.int32), [2, 0, 1]) | ||
## (Nt, Ny, Nx, 2) | ||
labels = tf.stack([1-P, P], 3) | ||
return labels |
Empty file.
Binary file added
BIN
+4.61 KB
Training_Data/__pycache__/Particle_Tracking_Training_Data.cpython-37.pyc
Binary file not shown.
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.