Skip to content

Commit

Permalink
minor fixes to references
Browse files Browse the repository at this point in the history
  • Loading branch information
paul-buerkner committed Jan 5, 2022
1 parent 0ec37d9 commit ef0f3bf
Show file tree
Hide file tree
Showing 3 changed files with 43 additions and 41 deletions.
7 changes: 4 additions & 3 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -245,9 +245,10 @@ https://mc-stan.org/posterior/>.
When using the MCMC convergence diagnostics `rhat`, `ess_bulk`, or `ess_tail`,
please also cite

* Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C. (2020).
* Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C. (2021).
Rank-normalization, folding, and localization: An improved Rhat for assessing
convergence of MCMC. *Bayesian Analysis*.
convergence of MCMC (with discussion). *Bayesian Analysis*. 16(2), 667–718.
doi.org/10.1214/20-BA1221

The same information can be obtained by running `citation("posterior")`.

Expand All @@ -259,7 +260,7 @@ Hall/CRC.

Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C. (2021).
Rank-normalization, folding, and localization: An improved Rhat for assessing
convergence of MCMC (with discussion). *Bayesian Analysis*. 16(2), 667-–718.
convergence of MCMC (with discussion). *Bayesian Analysis*. 16(2), 667–718.
doi.org/10.1214/20-BA1221

### Licensing
Expand Down
73 changes: 37 additions & 36 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -294,11 +294,11 @@ print(x4)
#> # A draws_matrix: 5 iterations, 1 chains, and 3 variables
#> variable
#> draw alpha beta theta
#> 1 1.11 1 0.565
#> 2 -0.41 1 0.015
#> 3 -0.28 1 0.591
#> 4 -0.40 1 1.773
#> 5 -0.30 1 1.357
#> 1 0.39 1 2.27
#> 2 -0.80 1 0.86
#> 3 0.95 1 1.93
#> 4 0.38 1 0.67
#> 5 0.18 1 2.04
```

Or, we can bind `x1` and `x2` together along the `'draw'` dimension:
Expand All @@ -309,16 +309,16 @@ print(x5)
#> # A draws_matrix: 10 iterations, 1 chains, and 2 variables
#> variable
#> draw alpha beta
#> 1 1.11 1
#> 2 -0.41 1
#> 3 -0.28 1
#> 4 -0.40 1
#> 5 -0.30 1
#> 6 0.46 2
#> 7 0.15 2
#> 8 -0.60 2
#> 9 1.84 2
#> 10 0.62 2
#> 1 0.39 1
#> 2 -0.80 1
#> 3 0.95 1
#> 4 0.38 1
#> 5 0.18 1
#> 6 0.13 2
#> 7 0.10 2
#> 8 -0.61 2
#> 9 0.12 2
#> 10 1.48 2
```

As with all **posterior** methods, `bind_draws` can be used with all
Expand All @@ -337,27 +337,27 @@ x <- as_draws_matrix(x)
print(x)
#> # A draws_matrix: 10 iterations, 1 chains, and 5 variables
#> variable
#> draw V1 V2 V3 V4 V5
#> 1 0.22 0.621 -0.580 0.813 -0.91
#> 2 -0.40 -0.372 -0.112 -0.710 0.46
#> 3 0.41 0.242 0.496 0.175 0.19
#> 4 1.01 -0.104 0.582 0.071 -0.45
#> 5 0.56 -1.592 -0.272 -0.110 -0.26
#> 6 -0.70 -1.492 0.040 0.531 -0.26
#> 7 0.70 0.191 -0.655 -0.516 -2.75
#> 8 -1.06 0.033 -0.141 0.359 1.40
#> 9 0.75 0.109 0.015 -0.449 1.25
#> 10 0.31 2.171 1.093 -0.749 0.18
#> draw V1 V2 V3 V4 V5
#> 1 -0.89 0.37 -0.25 -0.57 -2.85
#> 2 1.84 0.19 0.39 -0.52 1.26
#> 3 0.79 -0.74 -1.61 0.99 -0.11
#> 4 -2.25 0.28 -0.19 -0.33 0.92
#> 5 0.58 0.35 -0.92 0.56 0.82
#> 6 -1.38 -0.12 -0.40 -1.23 -0.60
#> 7 -0.18 1.18 -1.27 0.51 0.78
#> 8 0.17 1.50 -2.12 -0.45 -0.73
#> 9 -0.60 0.69 -0.43 -1.40 1.14
#> 10 0.18 0.96 -1.37 -0.58 -0.63

summarise_draws(x, "mean", "sd", "median", "mad")
#> # A tibble: 5 × 5
#> variable mean sd median mad
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 V1 0.178 0.679 0.356 0.545
#> 2 V2 -0.0193 1.06 0.0712 0.459
#> 3 V3 0.0466 0.541 -0.0489 0.559
#> 4 V4 -0.0587 0.539 -0.0196 0.686
#> 5 V5 -0.114 1.18 -0.0353 0.670
#> variable mean sd median mad
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 V1 -0.174 1.16 -0.00490 1.03
#> 2 V2 0.467 0.651 0.358 0.596
#> 3 V3 -0.817 0.770 -0.671 0.798
#> 4 V4 -0.301 0.773 -0.486 0.672
#> 5 V5 -0.000826 1.27 0.338 1.27
```

Instead of `as_draws_matrix()` we also could have just used
Expand Down Expand Up @@ -390,8 +390,9 @@ When using the MCMC convergence diagnostics `rhat`, `ess_bulk`, or
`ess_tail`, please also cite

- Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C.
(2020). Rank-normalization, folding, and localization: An improved
Rhat for assessing convergence of MCMC. *Bayesian Analysis*.
(2021). Rank-normalization, folding, and localization: An improved
Rhat for assessing convergence of MCMC (with discussion). *Bayesian
Analysis*. 16(2), 667–718. doi.org/10.1214/20-BA1221

The same information can be obtained by running `citation("posterior")`.

Expand All @@ -404,7 +405,7 @@ Chapman and Hall/CRC.
Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C. (2021).
Rank-normalization, folding, and localization: An improved Rhat for
assessing convergence of MCMC (with discussion). *Bayesian Analysis*.
16(2), 667-–718. doi.org/10.1214/20-BA1221
16(2), 667–718. doi.org/10.1214/20-BA1221

### Licensing

Expand Down
4 changes: 2 additions & 2 deletions inst/CITATION
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,13 @@ bibentry(bibtype = "Misc",

bibentry(bibtype = "Article",
title = "Rank-normalization, folding, and localization: An improved Rhat
for assessing convergence of MCMC",
for assessing convergence of MCMC (with discussion)",
author = c(person("Aki", "Vehtari"),
person("Andrew", "Gelman"),
person("Daniel", "Simpson"),
person("Bob", "Carpenter"),
person("Paul-Christian", "Bürkner")),
year = "2020",
year = "2021",
journal = "Bayesian Analysis",
header = "To cite the MCMC convergence diagnostics:"
)

0 comments on commit ef0f3bf

Please sign in to comment.