About | Features | Technologies | Requirements | Starting | License | References | Author
Describe your project
✔️ Sift compare images;
✔️ C++ OpenCV code;
✔️ Node addon API;
The following tools were used in this project:
- Node.js
- [C++]
- [OpenCV]
Before starting 🏁, you need to have Git and Node installed.
# OpenCV prerequisites
$ sudo apt update && sudo apt install -y cmake g++ wget unzip
$ wget -O opencv.zip https://github.com/opencv/opencv/archive/master.zip
$ unzip opencv.zip; rm opencv.zip
$ git clone https://github.com/opencv/opencv_contrib.git
$ cd opencv-master
$ mkdir -p build && cd build
$ cmake -DBUILD_SHARED_LIBS=OFF -DBUILD_LIST=calib3d,core,imgcodecs,features2d,imgproc,objdetect -DOPENCV_GENERATE_PKGCONFIG=YES -DWITH_GTK=NO -DWITH_PNG=NO -DWITH_JPEG=YES -DWITH_TIFF=NO -DWITH_WEBP=NO -DWITH_ITT=NO -DWITH_IPP=NO -DBUILD_JASPER=NO -DWITH_OPENEXR=NO -DWITH_QUIRC=NO -DWITH_RT=NO -DWITH_OPENJPEG=NO -DWITH_JASPER=NO -DWITH_EIGEN=NO -DHIGHGUI_ENABLE_PLUGINS=OFF ..
$ make -j6
$ sudo make install
# Clone this project
$ git clone https://github.com/stsier/vinlib
# Access
$ cd vinlib
$ mkdir build; cd build
# Install dependencies
$ npm install -S node-addon-api
$ npm install -g cmake-js
# Build
$ cmake-js
# Or
~~$ npm install -g node-gyp~~
~~$ node-gyp configure~~
~~$ node-gyp build~~
# Build
# Test the project
$ node index.js
# Output
info.Env(): : vs
[Extract Feature] Compute SIFT features using opencv sift
[Extract Feature Sift] keypoints: 3356; descriptors: [128 x 3356]; took 6758.45ms
[Extract Feature] Compute SIFT features using opencv sift
[Extract Feature Sift] keypoints: 4830; descriptors: [128 x 4830]; took 6671.97ms
[Good Matcher] took 71.613560ms
Good match percentage: 96/3356==2.860548%%
inliers: 26 / 96
[Homography Matcher] took 25.797964ms
Filter match percentage: 27.083334%
------------------------ Flann matcher : 0.774732%
[Good Matcher] took 430.586592ms
Good match percentage: 83/3356==2.473182%%
inliers: 25 / 83
[Homography Matcher] took 18.470230ms
Filter match percentage: 30.120483%
------------------------ BruteForce matcher : 0.744934%
[Good Matcher] took 402.348928ms
Good match percentage: 88/3356==2.622169%%
inliers: 24 / 88
[Homography Matcher] took 25.558200ms
Filter match percentage: 27.272728%
------------------------ BruteForceSq matcher : 0.715137%
This project is under license from MIT. For more details, see the LICENSE file.
Made with ❤️ by Sergei TSIER
Node js C++ OpenCV Python Homography OpenCV C++ Homography Filtering with Homography BEBILD