Releases: tensorflow/lattice
Releases · tensorflow/lattice
TensorFlow Lattice v2.1.1
Changes:
- Bug fixes for tutorial imports.
- Bug fixes for lattice layer build/load.
PyPI Release:
- Generic package for py3 and TF 2.x.
TensorFlow Lattice v2.1.0
Changes:
- Updating
keras
imports to usetf_keras
(for TF >= 2.16tf.keras
defaults to Keras-3). - Deprecating Estimators and Visualization library (removed in TF >= 2.16).
- All docs and tutorials converted to use Keras premade models instead of Estimators.
PyPI Release:
- Generic package for py3 and TF 2.x.
TensorFlow Lattice 2.0.13
Changes:
- Updates to the visualization library to support newer versions of matplotlib.
PyPI Release:
- Generic package for py3 and TF 2.x.
TensorFlow Lattice 2.0.12
Changes:
- Newly added conditional-CDF layer: A CDF function with derived parameters. This is similar to conditional-PWL, but the parameters are the shifts in the input space.
- Updates to model save/load functions to match changes in Keras lib.
- Removing Sonnet PWL module to simplify dependencies. The layer library code can still be wrapped in Sonnet modules by the user as needed.
PyPI Release:
- Generic package for py3 and TF 2.x.
TensorFlow Lattice 2.0.11
Changes:
- Updating code, tests and tutorials to support changes to tf.keras.optimizers.
- Documentation updates.
- Minor bug fixes.
PyPI Release:
- Generic package for py3 that should work for TF 1.15 or TF 2.x.
TensorFlow Lattice 2.0.10
Changes:
- Support for weighted quantiles for Estimators and Premade.
- Helper functions for computing quantiles in premade_lib
- Documentation updates.
- Minor bug fixes.
PyPI Release:
- Generic package for py3 that should work for TF 1.15 or TF 2.x.
TensorFlow Lattice 2.0.9
Changes:
- (experimental) Cumulative Distribution Function (CDF) Layer that supports projection free monotonicity.
- 'input_keypoints_type' parameter for PWLCalibration integration with Premade/Estimator models.
- Estimator support for tf.data.Dataset inputs.
- General tutorial/code cleanup.
- Typo fixes.
- Bug fixes.
PyPI Release:
- Generic package for py3 that should work for TF 1.15 or TF 2.x.
TensorFlow Lattice 2.0.8
Changes:
- (experimental) Parameterization option for Premade/Estimators that enables the use of both normal tfl.layers.Lattice layers ('all_vertices') and tfl.layers.KroneckerFactoredLattice layers ('kronecker_factored').
- (experimental) KroneckerFactoredLattice layer visualization support for Estimators.
- (experimental) KroneckerFactoredLattice bound constraints.
- 'input_keypoints_type' parameter for PWLCalibration layers that enables learned input keypoints ('learned_interior') or the original fixed keypoints ('fixed').
- General tutorial/code cleanup
- Typo fixes
- Bug fixes
PyPI Release:
- Generic package for py3 that should work for TF 1.15 or TF 2.x.
TensorFlow Lattice 2.0.7
Changes:
- (experimental) KroneckerFactoredLattice initialization now sorts on kernel axis 1 such that we sort each term individually.
- (experimental) KroneckerFactoredLattice initialization defaults to [0.5, 1.5] instead of [0,1].
- (experimental) KroneckerFactoredLattice custom_reduce_prod in interpolation for faster gradient computations.
- Update bound and trust projection algorithms to compute violations for each unit separately.
- 'loss_fn' option for estimators to use custom loss without having to define a custom head.
- Enable calibrators to return a list of outputs per unit.
- Enable RTL layer to return non-averaged outputs.
- General tutorial/code cleanup
- Typo fixes
- Bug fixes
PyPI Release:
- Generic package for py3 that should work for TF 1.15 or TF 2.x.
TensorFlow Lattice 2.0.6 [Note: last py2 compatible release]
TensorFlow is dropping py2 support, so we will be dropping support as well in our future releases. This is the last release that will support py2.
Changes:
- New (experimental) KroneckerFactoredLattice Layer, which introduces a new parameterization of our Lattice layer with linear space/time complexity.
- rtl_lib.py helper functions for RTL Layer.
- Utils module with useful helper functions for all layers.
- 'rtl_layer' option for CalibratedLatticeEnsemble Premade Models and Canned Estimators, which uses an RTL Layer for the underlying ensemble. Can potentially give a speed-boost for models with a large number of lattices.
- General code cleanup
- Typo fixes
- Bug fixes
PyPI release:
- Generic package for py2/py3 that should work for TF 1.15 or TF 2.x.