- numpy
- pandas
- matplotlib
- seaborn
- datetime
- calendar
- sklearn
- RandomForestRegressor
- preprocessing
- datetime: hourly date + timestamp
- season: 1 = spring, 2 = summer, 3 = fall, 4 = winter
- holiday: whether the day is considered a holiday
- workingday: whether the day is neither a weekend nor holiday
- weather:
- 1: Clear, Few clouds, Partly cloudy, Partly cloudy
- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
- 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
- 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- temp: temperature in Celsius
- atemp: "feels like" temperature in Celsius
- humidity: relative humidity
- windspeed: wind speed
- casual: number of non-registered user rentals initiated
- registered: number of registered user rentals initiated
- count: number of total rentals
- 匯入資料和套件
- 處理時間格式
- 異常值分析
- 觀察參數分布情形
- 將風速為0的資料進行補遺
- 相關性分析
- 透過取log使單車租借數量(count)分布接近Normal Distribution
- 特徵選取
- 使用Random forest進行預測
- 訓練模型和預測結果
- 提交結果
Public Score: 0.42968