-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ssl/wav2vec2] part of wav2vec2 training (#2034)
- Loading branch information
Showing
3 changed files
with
420 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
import torch | ||
|
||
|
||
def gumbel(shape: torch.Size, dtype: torch.dtype, device: torch.device): | ||
"""Sample Gumbel random values with given shape and float dtype. | ||
The values are distributed according to the probability density function: | ||
.. math:: | ||
f(x) = e^{-(x + e^{-x})} | ||
Args: | ||
shape (torch.Size): pdf shape | ||
dtype (torch.dtype): pdf value dtype | ||
Returns: | ||
A random array with the specified shape and dtype. | ||
""" | ||
# see https://www.cnblogs.com/initial-h/p/9468974.html for more details | ||
return -torch.log(-torch.log( | ||
torch.empty(shape, device=device).uniform_( | ||
torch.finfo(dtype).tiny, 1.))) | ||
|
||
|
||
class Wav2vecGumbelVectorQuantizer(torch.nn.Module): | ||
|
||
def __init__(self, | ||
features_dim: int = 256, | ||
num_codebooks: int = 2, | ||
num_embeddings: int = 8192, | ||
embedding_dim: int = 16, | ||
hard: bool = False) -> None: | ||
|
||
super().__init__() | ||
|
||
self.num_groups = num_codebooks | ||
self.num_codevectors_per_group = num_embeddings | ||
# codebooks | ||
# means [C, G, D] see quantize_vector in bestrq_model.py | ||
assert embedding_dim % num_codebooks == 0.0 | ||
self.embeddings = torch.nn.parameter.Parameter( | ||
torch.empty(1, num_codebooks * num_embeddings, | ||
embedding_dim // num_codebooks), | ||
requires_grad=True, | ||
) | ||
torch.nn.init.uniform_(self.embeddings) | ||
|
||
self.weight_proj = torch.nn.Linear(features_dim, | ||
num_codebooks * num_embeddings) | ||
# use gumbel softmax or argmax(non-differentiable) | ||
self.hard = hard | ||
|
||
@staticmethod | ||
def _compute_perplexity(probs, mask=None): | ||
if mask is not None: | ||
|
||
mask_extended = torch.broadcast_to(mask.flatten()[:, None, None], | ||
probs.shape) | ||
probs = torch.where(mask_extended.to(torch.bool), probs, | ||
torch.zeros_like(probs)) | ||
marginal_probs = probs.sum(dim=0) / mask.sum() | ||
else: | ||
marginal_probs = probs.mean(dim=0) | ||
|
||
perplexity = torch.exp(-torch.sum( | ||
marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() | ||
return perplexity | ||
|
||
def forward(self, | ||
input: torch.Tensor, | ||
input_mask: torch.Tensor, | ||
temperature: float = 1.): | ||
|
||
b, t, _ = input.size() | ||
|
||
hidden = self.weight_proj(input) | ||
hidden = hidden.reshape(b * t * self.num_groups, -1) | ||
if not self.hard: | ||
# sample code vector probs via gumbel in differentiateable way | ||
gumbels = gumbel(hidden.size(), hidden.dtype, hidden.device) | ||
codevector_probs = torch.nn.functional.softmax( | ||
(hidden + gumbels) / temperature, dim=-1) | ||
|
||
# compute perplexity | ||
codevector_soft_dist = torch.nn.functional.softmax( | ||
hidden.reshape(b * t, self.num_groups, -1), | ||
dim=-1, | ||
) # [B*T, num_codebooks, num_embeddings] | ||
perplexity = self._compute_perplexity(codevector_soft_dist, | ||
input_mask) | ||
else: | ||
# take argmax in non-differentiable way | ||
# comptute hard codevector distribution (one hot) | ||
codevector_idx = hidden.argmax(axis=-1) | ||
codevector_probs = torch.nn.functional.one_hot( | ||
codevector_idx, hidden.shape[-1]) * 1.0 | ||
codevector_probs = codevector_probs.reshape( | ||
b * t, self.num_groups, -1) | ||
perplexity = self._compute_perplexity(codevector_probs, input_mask) | ||
|
||
codevector_probs = codevector_probs.reshape(b * t, -1) | ||
# use probs to retrieve codevectors | ||
codevectors_per_group = codevector_probs.unsqueeze( | ||
-1) * self.embeddings | ||
codevectors = codevectors_per_group.reshape( | ||
b * t, self.num_groups, self.num_codevectors_per_group, -1) | ||
|
||
codevectors = codevectors.sum(-2).reshape(b, t, -1) | ||
return codevectors, perplexity |
Oops, something went wrong.