-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
189 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
108 changes: 108 additions & 0 deletions
108
rumale-neural_network/lib/rumale/neural_network/rvfl_classifier.rb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
# frozen_string_literal: true | ||
|
||
require 'rumale/base/classifier' | ||
require 'rumale/neural_network/base_rvfl' | ||
require 'rumale/utils' | ||
require 'rumale/validation' | ||
|
||
module Rumale | ||
module NeuralNetwork | ||
# RVFLClassifier is a class that implements classifier based on random vector functional link (RVFL) network. | ||
# The current implementation uses sigmoid function as activation function. | ||
# | ||
# @example | ||
# require 'numo/tiny_linalg' | ||
# Numo::Linalg = Numo::TinyLinalg | ||
# | ||
# require 'rumale/neural_network/rvfl_classifier' | ||
# | ||
# estimator = Rumale::NeuralNetwork::RVFLClassifier.new(hidden_units: 128, reg_param: 100.0) | ||
# estimator.fit(training_samples, traininig_labels) | ||
# results = estimator.predict(testing_samples) | ||
# | ||
# *Reference* | ||
# - Malik, A. K., Gao, R., Ganaie, M. A., Tanveer, M., and Suganthan, P. N., "Random vector functional link network: recent developments, applications, and future directions," Applied Soft Computing, vol. 143, 2023. | ||
# - Zhang, L., and Suganthan, P. N., "A comprehensive evaluation of random vector functional link networks," Information Sciences, vol. 367--368, pp. 1094--1105, 2016. | ||
class RVFLClassifier < BaseRVFL | ||
include ::Rumale::Base::Classifier | ||
|
||
# Return the class labels. | ||
# @return [Numo::Int32] (size: n_classes) | ||
attr_reader :classes | ||
|
||
# Return the weight vector in the hidden layer of RVFL network. | ||
# @return [Numo::DFloat] (shape: [n_hidden_units, n_features]) | ||
attr_reader :random_weight_vec | ||
|
||
# Return the bias vector in the hidden layer of RVFL network. | ||
# @return [Numo::DFloat] (shape: [n_hidden_units]) | ||
attr_reader :random_bias | ||
|
||
# Return the weight vector. | ||
# @return [Numo::DFloat] (shape: [n_features + n_hidden_units, n_classes]) | ||
attr_reader :weight_vec | ||
|
||
# Return the random generator. | ||
# @return [Random] | ||
attr_reader :rng | ||
|
||
# Create a new classifier with RVFL network. | ||
# | ||
# @param hidden_units [Array] The number of units in the hidden layer. | ||
# @param reg_param [Float] The regularization parameter. | ||
# @param scale [Float] The scale parameter for random weight and bias. | ||
# @param random_seed [Integer] The seed value using to initialize the random generator. | ||
def initialize(hidden_units: 128, reg_param: 100.0, scale: 1.0, random_seed: nil) | ||
super | ||
end | ||
|
||
# Fit the model with given training data. | ||
# | ||
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. | ||
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. | ||
# @return [RVFLClassifier] The learned classifier itself. | ||
def fit(x, y) | ||
x = ::Rumale::Validation.check_convert_sample_array(x) | ||
y = ::Rumale::Validation.check_convert_label_array(y) | ||
::Rumale::Validation.check_sample_size(x, y) | ||
raise 'RVFLClassifier#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false) | ||
|
||
@classes = Numo::NArray[*y.to_a.uniq.sort] | ||
|
||
partial_fit(x, one_hot_encode(y)) | ||
|
||
self | ||
end | ||
|
||
# Calculate confidence scores for samples. | ||
# | ||
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. | ||
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. | ||
def decision_function(x) | ||
x = ::Rumale::Validation.check_convert_sample_array(x) | ||
|
||
h = hidden_output(x) | ||
h.dot(@weight_vec) | ||
end | ||
|
||
# Predict class labels for samples. | ||
# | ||
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. | ||
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. | ||
def predict(x) | ||
x = ::Rumale::Validation.check_convert_sample_array(x) | ||
|
||
scores = decision_function(x) | ||
n_samples, n_classes = scores.shape | ||
label_ids = scores.max_index(axis: 1) - Numo::Int32.new(n_samples).seq * n_classes | ||
@classes[label_ids].dup | ||
end | ||
|
||
private | ||
|
||
def one_hot_encode(y) | ||
Numo::DFloat.cast(::Rumale::Utils.binarize_labels(y)) | ||
end | ||
end | ||
end | ||
end |
80 changes: 80 additions & 0 deletions
80
rumale-neural_network/spec/rumale/neural_network/rvfl_classifier_spec.rb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
# frozen_string_literal: true | ||
|
||
require 'spec_helper' | ||
|
||
require 'numo/tiny_linalg' | ||
Numo::Linalg = Numo::TinyLinalg unless defined?(Numo::Linalg) | ||
|
||
RSpec.describe Rumale::NeuralNetwork::RVFLClassifier do | ||
let(:x) { dataset[0] } | ||
let(:y) { dataset[1] } | ||
let(:classes) { y.to_a.uniq.sort } | ||
let(:n_samples) { x.shape[0] } | ||
let(:n_features) { x.shape[1] } | ||
let(:n_classes) { classes.size } | ||
let(:hidden_units) { 64 } | ||
let(:estimator) { described_class.new(hidden_units: hidden_units, reg_param: 1e4, random_seed: 1) } | ||
let(:predicted) { estimator.predict(x) } | ||
let(:score) { estimator.score(x, y) } | ||
|
||
shared_examples 'classification' do | ||
before { estimator.fit(x, y) } | ||
|
||
it 'classifies given dataset.', :aggregate_failures do | ||
expect(estimator.classes).to be_a(Numo::Int32) | ||
expect(estimator.classes).to be_contiguous | ||
expect(estimator.classes.ndim).to eq(1) | ||
expect(estimator.classes.shape[0]).to eq(n_classes) | ||
expect(estimator.random_weight_vec).to be_a(Numo::DFloat) | ||
expect(estimator.random_weight_vec).to be_contiguous | ||
expect(estimator.random_weight_vec.ndim).to eq(2) | ||
expect(estimator.random_weight_vec.shape[0]).to eq(n_features) | ||
expect(estimator.random_weight_vec.shape[1]).to eq(hidden_units) | ||
expect(estimator.random_bias).to be_a(Numo::DFloat) | ||
expect(estimator.random_bias).to be_contiguous | ||
expect(estimator.random_bias.ndim).to eq(1) | ||
expect(estimator.random_bias.shape[0]).to eq(hidden_units) | ||
expect(estimator.weight_vec).to be_a(Numo::DFloat) | ||
expect(estimator.weight_vec).to be_contiguous | ||
expect(estimator.weight_vec.ndim).to eq(2) | ||
expect(estimator.weight_vec.shape[0]).to eq(n_features + hidden_units) | ||
expect(estimator.weight_vec.shape[1]).to eq(n_classes) | ||
expect(predicted).to be_a(Numo::Int32) | ||
expect(predicted).to be_contiguous | ||
expect(predicted.ndim).to eq(1) | ||
expect(predicted.shape[0]).to eq(n_samples) | ||
expect(predicted).to eq(y) | ||
expect(score).to eq(1.0) | ||
end | ||
end | ||
|
||
context 'when the number of hidden units is less than the number of samples' do | ||
context 'when binary classification problem' do | ||
let(:dataset) { xor_dataset } | ||
|
||
it_behaves_like 'classification' | ||
end | ||
|
||
context 'when multiclass classification problem' do | ||
let(:dataset) { three_clusters_dataset } | ||
|
||
it_behaves_like 'classification' | ||
end | ||
end | ||
|
||
context 'when the number of hidden units is greater than the number of samples' do | ||
let(:hidden_units) { 512 } | ||
|
||
context 'when binary classification problem' do | ||
let(:dataset) { xor_dataset } | ||
|
||
it_behaves_like 'classification' | ||
end | ||
|
||
context 'when multiclass classification problem' do | ||
let(:dataset) { three_clusters_dataset } | ||
|
||
it_behaves_like 'classification' | ||
end | ||
end | ||
end |