-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
184 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
107 changes: 107 additions & 0 deletions
107
rumale-neural_network/lib/rumale/neural_network/rbf_classifier.rb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# frozen_string_literal: true | ||
|
||
require 'rumale/base/classifier' | ||
require 'rumale/utils' | ||
require 'rumale/validation' | ||
require 'rumale/neural_network/base_rbf' | ||
|
||
module Rumale | ||
module NeuralNetwork | ||
# RBFClassifier is a class that implements classifier based on (k-means) radial basis function (RBF) networks. | ||
# | ||
# @example | ||
# require 'numo/tiny_linalg' | ||
# Numo::Linalg = Numo::TinyLinalg | ||
# | ||
# require 'rumale/neural_network/rbf_classifier' | ||
# | ||
# estimator = Rumale::NeuralNetwork::RBFClassifier.new(hidden_units: 128, reg_param: 100.0) | ||
# estimator.fit(training_samples, traininig_labels) | ||
# results = estimator.predict(testing_samples) | ||
# | ||
# *Reference* | ||
# - Bugmann, G., "Normalized Gaussian Radial Basis Function networks," Neural Computation, vol. 20, pp. 97--110, 1998. | ||
# - Que, Q., and Belkin, M., "Back to the Future: Radial Basis Function Networks Revisited," Proc. of AISTATS'16, pp. 1375--1383, 2016. | ||
class RBFClassifier < BaseRBF | ||
include ::Rumale::Base::Classifier | ||
|
||
# Return the class labels. | ||
# @return [Numo::Int32] (size: n_classes) | ||
attr_reader :classes | ||
|
||
# Return the centers in the hidden layer of RBF network. | ||
# @return [Numo::DFloat] (shape: [n_centers, n_features]) | ||
attr_reader :centers | ||
|
||
# Return the weight vector. | ||
# @return [Numo::DFloat] (shape: [n_centers, n_classes]) | ||
attr_reader :weight_vec | ||
|
||
# Return the random generator. | ||
# @return [Random] | ||
attr_reader :rng | ||
|
||
# Create a new classifier with (k-means) RBF networks. | ||
# | ||
# @param hidden_units [Array] The number of units in the hidden layer. | ||
# @param gamma [Float] The parameter for the radial basis function, if nil it is 1 / n_features. | ||
# @param reg_param [Float] The regularization parameter. | ||
# @param normalize [Boolean] The flag indicating whether to normalize the hidden layer output or not. | ||
# @param max_iter [Integer] The maximum number of iterations for finding centers. | ||
# @param tol [Float] The tolerance of termination criterion for finding centers. | ||
# @param random_seed [Integer] The seed value using to initialize the random generator. | ||
def initialize(hidden_units: 128, gamma: nil, reg_param: 100.0, normalize: false, | ||
max_iter: 50, tol: 1e-4, random_seed: nil) | ||
super | ||
end | ||
|
||
# Fit the model with given training data. | ||
# | ||
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. | ||
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. | ||
# @return [RBFClassifier] The learned classifier itself. | ||
def fit(x, y) | ||
x = ::Rumale::Validation.check_convert_sample_array(x) | ||
y = ::Rumale::Validation.check_convert_label_array(y) | ||
::Rumale::Validation.check_sample_size(x, y) | ||
raise 'RBFClassifier#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false) | ||
|
||
@classes = Numo::NArray[*y.to_a.uniq.sort] | ||
|
||
partial_fit(x, one_hot_encode(y)) | ||
|
||
self | ||
end | ||
|
||
# Calculate confidence scores for samples. | ||
# | ||
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. | ||
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. | ||
def decision_function(x) | ||
x = ::Rumale::Validation.check_convert_sample_array(x) | ||
|
||
h = hidden_output(x) | ||
h.dot(@weight_vec) | ||
end | ||
|
||
# Predict class labels for samples. | ||
# | ||
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. | ||
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. | ||
def predict(x) | ||
x = ::Rumale::Validation.check_convert_sample_array(x) | ||
|
||
scores = decision_function(x) | ||
n_samples, n_classes = scores.shape | ||
label_ids = scores.max_index(axis: 1) - Numo::Int32.new(n_samples).seq * n_classes | ||
@classes[label_ids].dup | ||
end | ||
|
||
private | ||
|
||
def one_hot_encode(y) | ||
Numo::DFloat.cast(::Rumale::Utils.binarize_labels(y)) | ||
end | ||
end | ||
end | ||
end |
76 changes: 76 additions & 0 deletions
76
rumale-neural_network/spec/rumale/neural_network/rbf_classifier_spec.rb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# frozen_string_literal: true | ||
|
||
require 'spec_helper' | ||
|
||
require 'numo/tiny_linalg' | ||
Numo::Linalg = Numo::TinyLinalg | ||
|
||
RSpec.describe Rumale::NeuralNetwork::RBFClassifier do | ||
let(:x) { dataset[0] } | ||
let(:y) { dataset[1] } | ||
let(:classes) { y.to_a.uniq.sort } | ||
let(:n_samples) { x.shape[0] } | ||
let(:n_features) { x.shape[1] } | ||
let(:n_classes) { classes.size } | ||
let(:hidden_units) { 64 } | ||
let(:estimator) { described_class.new(hidden_units: hidden_units, reg_param: 1e4, random_seed: 1) } | ||
let(:predicted) { estimator.predict(x) } | ||
let(:score) { estimator.score(x, y) } | ||
|
||
shared_examples 'classification' do | ||
before { estimator.fit(x, y) } | ||
|
||
it 'classifies given dataset.', :aggregate_failures do | ||
expect(estimator.classes).to be_a(Numo::Int32) | ||
expect(estimator.classes).to be_contiguous | ||
expect(estimator.classes.ndim).to eq(1) | ||
expect(estimator.classes.shape[0]).to eq(n_classes) | ||
expect(estimator.centers).to be_a(Numo::DFloat) | ||
expect(estimator.centers).to be_contiguous | ||
expect(estimator.centers.ndim).to eq(2) | ||
expect(estimator.centers.shape[0]).to eq(hidden_units) | ||
expect(estimator.centers.shape[1]).to eq(n_features) | ||
expect(estimator.weight_vec).to be_a(Numo::DFloat) | ||
expect(estimator.weight_vec).to be_contiguous | ||
expect(estimator.weight_vec.ndim).to eq(2) | ||
expect(estimator.weight_vec.shape[0]).to eq(hidden_units) | ||
expect(estimator.weight_vec.shape[1]).to eq(n_classes) | ||
expect(predicted).to be_a(Numo::Int32) | ||
expect(predicted).to be_contiguous | ||
expect(predicted.ndim).to eq(1) | ||
expect(predicted.shape[0]).to eq(n_samples) | ||
expect(predicted).to eq(y) | ||
expect(score).to eq(1.0) | ||
end | ||
end | ||
|
||
context 'when the number of hidden units is less than the number of samples' do | ||
context 'when binary classification problem' do | ||
let(:dataset) { xor_dataset } | ||
|
||
it_behaves_like 'classification' | ||
end | ||
|
||
context 'when multiclass classification problem' do | ||
let(:dataset) { three_clusters_dataset } | ||
|
||
it_behaves_like 'classification' | ||
end | ||
end | ||
|
||
context 'when the number of hidden units is greater than the number of samples' do | ||
let(:hidden_units) { 512 } | ||
|
||
context 'when binary classification problem' do | ||
let(:dataset) { xor_dataset } | ||
|
||
it_behaves_like 'classification' | ||
end | ||
|
||
context 'when multiclass classification problem' do | ||
let(:dataset) { three_clusters_dataset } | ||
|
||
it_behaves_like 'classification' | ||
end | ||
end | ||
end |