-
Notifications
You must be signed in to change notification settings - Fork 61
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
54 additions
and
0 deletions.
There are no files selected for viewing
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
|
||
|
||
import llama | ||
import torch | ||
import pandas as pd | ||
from torch.utils.data import Dataset, random_split | ||
from transformers import TrainingArguments, Trainer | ||
|
||
MODEL = 'decapoda-research/llama-7b-hf' | ||
DATA_FILE_PATH = 'elon_musk_tweets.csv' | ||
|
||
texts = pd.read_csv(DATA_FILE_PATH)['text'] | ||
|
||
tokenizer = llama.LLaMATokenizer.from_pretrained(MODEL) | ||
model = llama.LLaMAForCausalLM.from_pretrained(MODEL).cuda() | ||
|
||
class TextDataset(Dataset): | ||
def __init__(self, txt_list, tokenizer, max_length): | ||
self.labels = [] | ||
self.input_ids = [] | ||
self.attn_masks = [] | ||
for txt in txt_list: | ||
encodings_dict = tokenizer(txt, truncation = True, max_length = max_length, padding = "max_length") | ||
self.input_ids.append(torch.tensor(encodings_dict['input_ids'])) | ||
self.attn_masks.append(torch.tensor(encodings_dict['attention_mask'])) | ||
def __len__(self): return len(self.input_ids) | ||
def __getitem__(self, idx): return self.input_ids[idx], self.attn_masks[idx] | ||
|
||
dataset = TextDataset(texts, tokenizer, max_length = max([len(tokenizer.encode(text)) for text in texts])) | ||
train_dataset, val_dataset = random_split(dataset, [int(0.9 * len(dataset)), len(dataset) - int(0.9 * len(dataset))]) | ||
|
||
training_args = TrainingArguments( | ||
save_steps = 5000, | ||
warmup_steps = 10, | ||
logging_steps = 100, | ||
weight_decay = 0.05, | ||
num_train_epochs = 1, | ||
logging_dir = './logs', | ||
output_dir = './results', | ||
per_device_eval_batch_size = 1, | ||
per_device_train_batch_size = 1) | ||
|
||
Trainer(model = model, | ||
args = training_args, | ||
eval_dataset = val_dataset, | ||
train_dataset = train_dataset, | ||
data_collator = lambda data: {'input_ids': torch.stack([f[0] for f in data]), 'attention_mask': torch.stack([f[1] for f in data]), 'labels': torch.stack([f[0] for f in data])}).train() | ||
|
||
sample_outputs = model.generate(tokenizer('', return_tensors="pt").input_ids.cuda(), | ||
do_sample = True, | ||
top_k = 50, | ||
max_length = 300, | ||
top_p = 0.95, | ||
temperature = 1.0) |