Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added product LMO #97

Merged
merged 3 commits into from
Mar 1, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions src/norm_oracles.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ end

LpNormLMO{p}(right_hand_side::T) where {T,p} = LpNormLMO{T,p}(right_hand_side)

function compute_extreme_point(lmo::LpNormLMO{T,2}, direction) where {T}
function compute_extreme_point(lmo::LpNormLMO{T,2}, direction; kwargs...) where {T}
dir_norm = norm(direction, 2)
res = similar(direction)
n = length(direction)
Expand All @@ -26,11 +26,11 @@ function compute_extreme_point(lmo::LpNormLMO{T,2}, direction) where {T}
return res
end

function compute_extreme_point(lmo::LpNormLMO{T,Inf}, direction) where {T}
function compute_extreme_point(lmo::LpNormLMO{T,Inf}, direction; kwargs...) where {T}
return -[lmo.right_hand_side * sign(d) for d in direction]
end

function compute_extreme_point(lmo::LpNormLMO{T,1}, direction) where {T}
function compute_extreme_point(lmo::LpNormLMO{T,1}, direction; kwargs...) where {T}
idx = 0
v = -one(eltype(direction))
for i in eachindex(direction)
Expand All @@ -42,7 +42,7 @@ function compute_extreme_point(lmo::LpNormLMO{T,1}, direction) where {T}
return MaybeHotVector(-lmo.right_hand_side * sign(direction[idx]), idx, length(direction))
end

function compute_extreme_point(lmo::LpNormLMO{T,p}, direction) where {T,p}
function compute_extreme_point(lmo::LpNormLMO{T,p}, direction; kwargs...) where {T,p}
# covers the case where the Inf or 1 is of another type
if p == Inf
return compute_extreme_point(LpNormLMO{T,Inf}(lmo.right_hand_side), direction)
Expand All @@ -69,7 +69,7 @@ struct L1ballDense{T} <: LinearMinimizationOracle
end


function compute_extreme_point(lmo::L1ballDense{T}, direction) where {T}
function compute_extreme_point(lmo::L1ballDense{T}, direction; kwargs...) where {T}
idx = 0
v = -1.0
for i in eachindex(direction)
Expand Down Expand Up @@ -98,7 +98,7 @@ struct KNormBallLMO{T} <: LinearMinimizationOracle
right_hand_side::T
end

function compute_extreme_point(lmo::KNormBallLMO{T}, direction) where {T}
function compute_extreme_point(lmo::KNormBallLMO{T}, direction; kwargs...) where {T}
K = max(min(lmo.K, length(direction)), 1)

oinf = zero(eltype(direction))
Expand Down
44 changes: 44 additions & 0 deletions src/oracles.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ abstract type LinearMinimizationOracle end

Computes the point `argmin_{v ∈ C} v ⋅ direction`
with `C` the set represented by the LMO.
All LMOs should accept keyword arguments that they can ignore.
"""
function compute_extreme_point end

Expand Down Expand Up @@ -246,3 +247,46 @@ function compute_extreme_point(
end
return v
end

"""
ProductLMO(lmos...)

Linear minimization oracle over the Cartesian product of multiple LMOs.
"""
struct ProductLMO{N, TL <: NTuple{N, LinearMinimizationOracle}} <: LinearMinimizationOracle
lmos::TL
end

function ProductLMO{N}(lmos::TL) where {N, TL <: NTuple{N, LinearMinimizationOracle}}
return ProductLMO{N, TL}(lmos)
end

function ProductLMO(lmos::Vararg{LinearMinimizationOracle, N}) where {N}
return ProductLMO{N}(lmos)
end

"""
compute_extreme_point(lmo::ProductLMO, direction::Tuple; kwargs...)

Extreme point computation on Cartesian product, with a direction `(d1, d2, ...)` given as a tuple of directions.
All keyword arguments are passed to all LMOs.
"""
function compute_extreme_point(lmo::ProductLMO, direction::Tuple; kwargs...)
return compute_extreme_point.(lmo.lmos, direction; kwargs...)
end

"""
compute_extreme_point(lmo::ProductLMO, direction::AbstractArray; direction_indices, storage=similar(direction))

Extreme point computation, with a direction array and `direction_indices` provided such that:
`direction[direction_indices[i]]` is passed to the i-th LMO.
The result is stored in the optional `storage` container.

All keyword arguments are passed to all LMOs.
"""
function compute_extreme_point(lmo::ProductLMO{N}, direction::AbstractArray; storage=similar(direction), direction_indices, kwargs...) where {N}
for idx in 1:N
storage[direction_indices[idx]] .= compute_extreme_point(lmo.lmos[idx], direction[direction_indices[idx]]; kwargs...)
end
return storage
end
4 changes: 2 additions & 2 deletions src/polytope_oracles.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ struct KSparseLMO{T} <: LinearMinimizationOracle
right_hand_side::T
end

function compute_extreme_point(lmo::KSparseLMO{T}, direction) where {T}
function compute_extreme_point(lmo::KSparseLMO{T}, direction; kwargs...) where {T}
K = min(lmo.K, length(direction))
K_indices = sortperm(direction[1:K], by=abs, rev=true)
K_values = direction[K_indices]
Expand Down Expand Up @@ -87,7 +87,7 @@ Its extreme vertices are all permutation matrices of side-dimension `dimension`.
struct BirkhoffPolytopeLMO <: LinearMinimizationOracle
end

function compute_extreme_point(::BirkhoffPolytopeLMO, direction::AbstractMatrix{T}) where {T}
function compute_extreme_point(::BirkhoffPolytopeLMO, direction::AbstractMatrix{T}; kwargs...) where {T}
n = size(direction, 1)
n == size(direction, 2) ||
DimensionMismatch("direction should be square and matching BirkhoffPolytopeLMO dimension")
Expand Down
4 changes: 2 additions & 2 deletions src/simplex_oracles.jl
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ LMO for scaled probability simplex.
Returns a vector with one active value equal to RHS in the
most improving (or least degrading) direction.
"""
function compute_extreme_point(lmo::ProbabilitySimplexOracle{T}, direction) where {T}
function compute_extreme_point(lmo::ProbabilitySimplexOracle{T}, direction; kwargs...) where {T}
idx = argmin(direction)
return MaybeHotVector(lmo.right_side, idx, length(direction))
end
Expand Down Expand Up @@ -120,7 +120,7 @@ for scaled probability simplex.
Returns two vectors. The first one is the dual costs associated with the constraints
and the second is the reduced costs for the variables.
"""
function compute_dual_solution(::ProbabilitySimplexOracle{T}, direction, primal_solution) where {T}
function compute_dual_solution(::ProbabilitySimplexOracle{T}, direction, primal_solution; kwargs...) where {T}
idx = argmax(primal_solution)
lambda = [direction[idx]]
mu = direction .- lambda
Expand Down
18 changes: 18 additions & 0 deletions test/lmo.jl
Original file line number Diff line number Diff line change
Expand Up @@ -573,3 +573,21 @@ end
end
end
end

@testset "Product LMO" begin
#
lmo = FrankWolfe.ProductLMO(
FrankWolfe.LpNormLMO{Inf}(3.0),
FrankWolfe.LpNormLMO{1}(2.0),
)
dinf = randn(10)
d1 = randn(5)
vtup = FrankWolfe.compute_extreme_point(lmo, (dinf, d1))
@test length(vtup) == 2
(vinf, v1) = vtup
@test sum(abs, vinf) ≈ 10 * 3.0
@test sum(!iszero, v1) == 1

vvec = FrankWolfe.compute_extreme_point(lmo, [dinf;d1]; direction_indices=(1:10, 11:15))
@test vvec ≈ [vinf;v1]
end